
Ãsa FrostegÃ¥rd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4671780/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Linking meta-omics to the kinetics of denitrification intermediates reveals pH-dependent causes of N2O emissions and nitrite accumulation in soil. ISME Journal, 2022, 16, 26-37.	4.4	40
2	Nitrous oxide respiring bacteria in biogas digestates for reduced agricultural emissions. ISME Journal, 2022, 16, 580-590.	4.4	16
3	Regulation of the Emissions of the Greenhouse Gas Nitrous Oxide by the Soybean Endosymbiont Bradyrhizobium diazoefficiens. International Journal of Molecular Sciences, 2022, 23, 1486.	1.8	5
4	Genotypic and phenotypic characterization of hydrogenotrophic denitrifiers. Environmental Microbiology, 2022, 24, 1887-1901.	1.8	7
5	Rhizobia: highways to NO. Biochemical Society Transactions, 2021, 49, 495-505.	1.6	1
6	Competition for electrons favours <scp>N₂O</scp> reduction in denitrifying <i>Bradyrhizobium</i> isolates. Environmental Microbiology, 2021, 23, 2244-2259.	1.8	24
7	A common mechanism for efficient N ₂ O reduction in diverse isolates of noduleâ€forming bradyrhizobia. Environmental Microbiology, 2020, 22, 17-31.	1.8	39
8	Emerging options for mitigating N2O emissions from food production by manipulating the soil microbiota. Current Opinion in Environmental Sustainability, 2020, 47, 89-94.	3.1	25
9	Contingent Effects of Liming on N2O-Emissions Driven by Autotrophic Nitrification. Frontiers in Environmental Science, 2020, 8, .	1.5	25
10	NO and N ₂ O transformations of diverse fungi in hypoxia: evidence for anaerobic respiration only in <i>Fusarium</i> strains. Environmental Microbiology, 2020, 22, 2182-2195.	1.8	24
11	Host Range and Symbiotic Effectiveness of N2O Reducing Bradyrhizobium Strains. Frontiers in Microbiology, 2019, 10, 2746.	1.5	18
12	Denitrification as an N2O sink. Water Research, 2019, 151, 381-387.	5.3	101
13	Nitrite kinetics during anoxia: The role of abiotic reactions versus microbial reduction. Soil Biology and Biochemistry, 2018, 119, 203-209.	4.2	45
14	Inter-laboratory testing of the effect of DNA blocking reagent G2 on DNA extraction from low-biomass clay samples. Scientific Reports, 2018, 8, 5711.	1.6	9
15	A bet-hedging strategy for denitrifying bacteria curtails their release of N ₂ O. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11820-11825.	3.3	78
16	Rapid Succession of Actively Transcribing Denitrifier Populations in Agricultural Soil During an Anoxic Spell. Frontiers in Microbiology, 2018, 9, 3208.	1.5	12
17	Phylogenetically diverse groups of Bradyrhizobium isolated from nodules of tree and annual legume species growing in Ethiopia. Systematic and Applied Microbiology, 2017, 40, 205-214.	1.2	20
18	Carbon-driven enrichment of the crucial nitrate-reducing bacteria in limed peat soil microcosms. Letters in Applied Microbiology, 2017, 65, 159-164.	1.0	7

#	Article	IF	CITATIONS
19	Kinetics of NH ₃ â€oxidation, NOâ€turnover, N ₂ Oâ€production and electron flow during oxygen depletion in model bacterial and archaeal ammonia oxidisers. Environmental Microbiology, 2017, 19, 4882-4896.	1.8	86
20	Time-resolved analysis of a denitrifying bacterial community revealed a core microbiome responsible for the anaerobic degradation of quinoline. Scientific Reports, 2017, 7, 14778.	1.6	20
21	Phenotypic and genotypic richness of denitrifiers revealed by a novel isolation strategy. ISME Journal, 2017, 11, 2219-2232.	4.4	151
22	Sources and sinks for N ₂ O, can microbiologist help to mitigate N ₂ O emissions?. Environmental Microbiology, 2017, 19, 4801-4805.	1.8	56
23	Back to the Future of Soil Metagenomics. Frontiers in Microbiology, 2016, 7, 73.	1.5	120
24	Transparent DNA/RNA Co-extraction Workflow Protocol Suitable for Inhibitor-Rich Environmental Samples That Focuses on Complete DNA Removal for Transcriptomic Analyses. Frontiers in Microbiology, 2016, 7, 1588.	1.5	25
25	Transcriptional and metabolic regulation of denitrification in <scp><i>P</i></scp> <i>aracoccus denitrificans</i> allows low but significant activity of nitrous oxide reductase under oxic conditions. Environmental Microbiology, 2016, 18, 2951-2963.	1.8	72
26	Regulation of nitrogen metabolism in the nitrateâ€ammonifying soil bacterium <scp><i>B</i></scp> <i>acillus vireti</i> and evidence for its ability to grow using <scp><scp>N₂O</scp></scp> as electron acceptor. Environmental Microbiology, 2016, 18, 2937-2950.	1.8	34
27	Anoxic growth of Ensifer meliloti 1021 by N2O-reduction, a potential mitigation strategy. Frontiers in Microbiology, 2015, 6, 537.	1.5	42
28	Impaired Reduction of N ₂ O to N ₂ in Acid Soils Is Due to a Posttranscriptional Interference with the Expression of <i>nosZ</i> . MBio, 2014, 5, e01383-14.	1.8	170
29	The nitrateâ€ammonifying and <scp><i>nosZ</i></scp> arrying bacterium <scp><i>B</i></scp> <i>acillus vireti</i> is a potent source and sink for nitric and nitrous oxide under high nitrate conditions. Environmental Microbiology, 2014, 16, 3196-3210.	1.8	66
30	Production and consumption of nitrous oxide in nitrate-ammonifying Wolinella succinogenes cells. Microbiology (United Kingdom), 2014, 160, 1749-1759.	0.7	24
31	Mesorhizobium shonense sp. nov., Mesorhizobium hawassense sp. nov. and Mesorhizobium abyssinicae sp. nov., isolated from root nodules of different agroforestry legume trees. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 1746-1753.	0.8	58
32	Phylogenetic diversity of Rhizobium strains nodulating diverse legume species growing in Ethiopia. Systematic and Applied Microbiology, 2013, 36, 272-280.	1.2	30
33	Draft Genome Sequences of Five Strains in the Genus <i>Thauera</i> . Genome Announcements, 2013, 1, .	0.8	16
34	Strains in the genus <i><scp>T</scp>hauera</i> exhibit remarkably different denitrification regulatory phenotypes. Environmental Microbiology, 2013, 15, 2816-2828.	1.8	207
35	Expression of nitrous oxide reductase in Paracoccus denitrificans is regulated by oxygen and nitric oxide through FnrP and NNR. Microbiology (United Kingdom), 2012, 158, 826-834.	0.7	105
36	Phylogenetic multilocus sequence analysis identifies seven novel Ensifer genospecies isolated from a less-well-explored biogeographical region in East Africa. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 2286-2295.	0.8	34

Ã...sa FrostegÃ¥rd

#	Article	IF	CITATIONS
37	Regulation of denitrification at the cellular level: a clue to the understanding of N ₂ O emissions from soils. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1226-1234.	1.8	272
38	Fate of invading bacteria in soil and survival of transformants after simulated uptake of transgenes, as evaluated by a model system based on lindane degradation. Research in Microbiology, 2012, 163, 200-210.	1.0	9
39	Denitrification regulatory phenotype, a new term for the characterization of denitrifying bacteria. Biochemical Society Transactions, 2011, 39, 207-212.	1.6	53
40	Use and misuse of PLFA measurements in soils. Soil Biology and Biochemistry, 2011, 43, 1621-1625.	4.2	916
41	Multilocus sequence analyses reveal several unnamed Mesorhizobium genospecies nodulating Acacia species and Sesbania sesban trees in Southern regions of Ethiopia. Systematic and Applied Microbiology, 2011, 34, 216-226.	1.2	60
42	Phosphorus limitation in a Ferralsol: Impact on microbial activity and cell internal P pools. Soil Biology and Biochemistry, 2010, 42, 558-566.	4.2	105
43	Denitrification gene pools, transcription and kinetics of NO, N2O and N2 production as affected by soil pH. FEMS Microbiology Ecology, 2010, 72, 407-417.	1.3	401
44	Denitrification Response Patterns during the Transition to Anoxic Respiration and Posttranscriptional Effects of Suboptimal pH on Nitrogen Oxide Reductase in <i>Paracoccus denitrificans</i> . Applied and Environmental Microbiology, 2010, 76, 6387-6396.	1.4	226
45	Site identity and moss species as determinants of soil microbial community structure in Norway spruce forests across three vegetation zones. Plant and Soil, 2009, 318, 81-91.	1.8	8
46	Presence of Actinobacterial and Fungal Communities in Clean and Petroleum Hydrocarbon Contaminated Subsurface Soil. Open Microbiology Journal, 2009, 3, 75-86.	0.2	13
47	Functional robustness and gene pools of a wastewater nitrification reactor: comparison of dispersed and intact biofilms when stressed by low oxygen and low pH. FEMS Microbiology Ecology, 2008, 66, 167-180.	1.3	9
48	Transcription and activities of NO _x reductases in <i>Agrobacterium tumefaciens</i> : the influence of nitrate, nitrite and oxygen availability. Environmental Microbiology, 2008, 10, 3070-3081.	1.8	95
49	Extraction of soil bacteria from a Ferralsol. Soil Biology and Biochemistry, 2008, 40, 1940-1946.	4.2	15
50	Variation in soil microbial communities across a boreal spruce forest landscape. Canadian Journal of Forest Research, 2008, 38, 1504-1516.	0.8	19
51	Fate of transgenic plant DNA in the environment. Environmental Biosafety Research, 2007, 6, 15-35.	1.1	37
52	Kinetics of microbial growth and degradation of organic substrates in subsoil as affected by an inhibitor, benzotriazole: Model based analyses of experimental results. Soil Biology and Biochemistry, 2007, 39, 1597-1608.	4.2	19
53	Nucleic Acid Extraction from Soil. , 2006, , 49-73.		28
54	Functional and community-level soil microbial responses to zinc addition may depend on test system biocomplexity. Chemosphere, 2006, 65, 1747-1754.	4.2	11

Ã...sa FrostegÃ¥rd

#	Article	IF	CITATIONS
55	Organic compounds that reach subsoil may threaten groundwater quality; effect of benzotriazole on degradation kinetics and microbial community composition. Soil Biology and Biochemistry, 2006, 38, 2543-2556.	4.2	33
56	Changes in the microbial community in a forest soil amended with aluminium in situ. Plant and Soil, 2005, 275, 295-304.	1.8	30
57	Nutrient and Carbon Additions to the Microbial Soil Community and its Impact on Tree Seedlings in a Boreal Spruce Forest. Plant and Soil, 2005, 278, 275-291.	1.8	10
58	Genetic diversity and phylogeny of rhizobia isolated from agroforestry legume species in southern Ethiopia. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 1439-1452.	0.8	84
59	Retention and removal of the fish pathogenic bacterium Yersinia ruckeri in biological sand filters. Journal of Applied Microbiology, 2004, 97, 598-608.	1.4	8
60	Rhizobia nodulating African Acacia spp. and Sesbania sesban trees in southern Ethiopian soils are metabolically and genomically diverse. Soil Biology and Biochemistry, 2004, 36, 2013-2025.	4.2	31
61	Metabolic and Genomic Diversity of Rhizobia Isolated from Field Standing Native and Exotic Woody Legumes in Southern Ethiopia. Systematic and Applied Microbiology, 2004, 27, 603-611.	1.2	39
62	Nodulation status of native woody legumes and phenotypic characteristics of associated rhizobia in soils of southern Ethiopia. Biology and Fertility of Soils, 2004, 40, 55-66.	2.3	24
63	Erratum to "Development of a conditional lethal system for a Streptomyces lividans strain and its use to investigate conjugative transfer in soil―[FEMS Microbiology Ecology 38 (2001) 115–121]1. FEMS Microbiology Ecology, 2002, 40, 83-84.	1.3	0
64	Erratum to "Development of a conditional lethal system for a Streptomyces lividans strain and its use to investigate conjugative transfer in soil― FEMS Microbiology Ecology, 2002, 40, 83-84.	1.3	0
65	Quantification of bacterial subgroups in soil: comparison of DNA extracted directly from soil or from cells previously released by density gradient centrifugation. Environmental Microbiology, 2001, 3, 431-439.	1.8	155
66	Development of a conditional lethal system for a Streptomyces lividans strain and its use to investigate conjugative transfer in soil. FEMS Microbiology Ecology, 2001, 38, 115-121.	1.3	1
67	Quantification of Bias Related to the Extraction of DNA Directly from Soils. Applied and Environmental Microbiology, 1999, 65, 5409-5420.	1.4	423
68	Responses of the soil microbiota to elevated CO2 in an artificial tropical ecosystem. Journal of Microbiological Methods, 1999, 36, 45-54.	0.7	43
69	During Infection of Its Host, the Plant Pathogen Ralstonia solanacearum Naturally Develops a State of Competence and Exchanges Genetic Material. Molecular Plant-Microbe Interactions, 1999, 12, 467-472.	1.4	82
70	Microbial oxidation of CH4 at high partial pressures in an organic landfill cover soil under different moisture regimes. FEMS Microbiology Ecology, 1998, 26, 207-217.	1.3	56
71	Effect of Metal-Rich Sludge Amendments on the Soil Microbial Community. Applied and Environmental Microbiology, 1998, 64, 238-245.	1.4	313
72	Phospholipid fatty acid composition of size fractionated indigenous soil bacteria. Soil Biology and Biochemistry, 1997, 29, 1565-1569.	4.2	28

Ã...sa FrostegÃ¥rd

#	Article	IF	CITATIONS
73	Dynamics of a microbial community associated with manure hot spots as revealed by phospholipid fatty acid analyses. Applied and Environmental Microbiology, 1997, 63, 2224-2231.	1.4	109
74	Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals. Soil Biology and Biochemistry, 1996, 28, 55-63.	4.2	307
75	O2 uptake, C metabolism and denitrification associated with manure hot-spots. Soil Biology and Biochemistry, 1996, 28, 341-349.	4.2	93
76	Changes in soil fungal:bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biology and Fertility of Soils, 1996, 22, 261-264.	2.3	558
77	Phospholipid Fatty Acid Composition and Heavy Metal Tolerance of Soil Microbial Communities along Two Heavy Metal-Polluted Gradients in Coniferous Forests. Applied and Environmental Microbiology, 1996, 62, 420-428.	1.4	337
78	Microbial community structure and pH response in relation to soil organic matter quality in wood-ash fertilized, clear-cut or burned coniferous forest soils. Soil Biology and Biochemistry, 1995, 27, 229-240.	4.2	419
79	Thymidine, leucine and acetate incorporation into soil bacterial assemblages at different temperatures. FEMS Microbiology Ecology, 1994, 14, 221-231.	1.3	18
80	Multiple Heavy Metal Tolerance of Soil Bacterial Communities and Its Measurement by a Thymidine Incorporation Technique. Applied and Environmental Microbiology, 1994, 60, 2238-2247.	1.4	148
81	Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biology and Biochemistry, 1993, 25, 723-730.	4.2	1,222
82	Phospholipid Fatty Acid Composition, Biomass, and Activity of Microbial Communities from Two Soil Types Experimentally Exposed to Different Heavy Metals. Applied and Environmental Microbiology, 1993, 59, 3605-3617.	1.4	1,191
83	Utilization of organic and inorganic nitrogen sources by ectomycorrhizal fungi in pure culture and in symbiosis with Pinus contorta Dougl. ex Loud New Phytologist, 1992, 120, 105-115.	3.5	276
84	Soil Bacterial Biomass, Activity, Phospholipid Fatty Acid Pattern, and pH Tolerance in an Area Polluted with Alkaline Dust Deposition. Applied and Environmental Microbiology, 1992, 58, 4026-4031.	1.4	196
85	Microbial biomass measured as total lipid phosphate in soils of different organic content. Journal of Microbiological Methods, 1991, 14, 151-163.	0.7	802