
Lijuan Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4671452/publications.pdf Version: 2024-02-01

IIAN

#	Article	IF	CITATIONS
1	On the Capacitance of Slotted Metamaterial Resonators for Frequency-Variation Permittivity Sensing. , 2022, , .		0
2	Circuit Analysis of a Coplanar Waveguide (CPW) Terminated With a Step-Impedance Resonator (SIR) for Highly Sensitive One-Port Permittivity Sensing. IEEE Access, 2022, 10, 62597-62612.	4.2	21
3	On the Sensitivity of Reflective-Mode Phase-Variation Sensors Based on Open-Ended Stepped-Impedance Transmission Lines: Theoretical Analysis and Experimental Validation. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 308-324.	4.6	52
4	Highly Sensitive Phase Variation Sensors Based on Step-Impedance Coplanar Waveguide (CPW) Transmission Lines. IEEE Sensors Journal, 2021, 21, 2864-2872.	4.7	36
5	Highly Sensitive Reflective-Mode Phase-Variation Permittivity Sensor Based on a Coplanar Waveguide Terminated With an Open Complementary Split Ring Resonator (OCSRR). IEEE Access, 2021, 9, 27928-27944.	4.2	42
6	Planar Phase-Variation Microwave Sensors for Material Characterization: A Review and Comparison of Various Approaches. Sensors, 2021, 21, 1542.	3.8	20
7	Phase-Variation Microwave Sensor for Permittivity Measurements Based on a High-Impedance Half-Wavelength Transmission Line. IEEE Sensors Journal, 2021, 21, 10647-10656.	4.7	33
8	Parametric Analysis of the Edge Capacitance of Uniform Slots and Application to Frequency-Variation Permittivity Sensors. Applied Sciences (Switzerland), 2021, 11, 7000.	2.5	13
9	Highly Sensitive Defect Detectors and Comparators Exploiting Port Imbalance in Rat-Race Couplers Loaded With Step-Impedance Open-Ended Transmission Lines. IEEE Sensors Journal, 2021, 21, 26731-26745.	4.7	14
10	On the Modeling of Microstrip Lines Loaded With Dumbbell Defect-Ground-Structure (DB-DGS) and Folded DB-DGS Resonators. IEEE Access, 2021, 9, 150878-150888.	4.2	13
11	A Microwave Microfluidic Reflective-Mode Phase-Variation Sensor. , 2021, , .		5
12	Discussion and Analysis of Dumbbell Defect-Ground-Structure (DB-DGS) Resonators for Sensing Applications from a Circuit Theory Perspective. Sensors, 2021, 21, 8334.	3.8	5
13	A Flexible Microwave Sensor Based on Complementary Spiral Resonator for Material Dielectric Characterization. IEEE Sensors Journal, 2020, 20, 1893-1903.	4.7	24
14	Highly Sensitive Reflective-Mode Defect Detectors and Dielectric Constant Sensors Based on Open-Ended Stepped-Impedance Transmission Lines. Sensors, 2020, 20, 6236.	3.8	24
15	A Reflective-Mode Phase-Variation Displacement Sensor. IEEE Access, 2020, 8, 189565-189575.	4.2	34
16	Open-Ended-Line Reflective-Mode Phase-Variation Sensors for Dielectric Constant Measurements. , 2020, , .		5
17	Analytical Method to Estimate the Complex Permittivity of Oil Samples. Sensors, 2018, 18, 984.	3.8	131
18	Microwave sensors based on symmetry properties and metamaterial concepts: A review of some recent developments (Invited paper) 2017		2

developments (Invited paper)., 2017, ,.

Lijuan Su

#	Article	IF	CITATIONS
19	Microwave Microfluidic Sensor Based on a Microstrip Splitter/Combiner Configuration and Split Ring Resonators (SRRs) for Dielectric Characterization of Liquids. IEEE Sensors Journal, 2017, 17, 6589-6598.	4.7	275
20	Modeling and analysis of pairs of open complementary split ring resonators (OCSRRs) for differential permittivity sensing. , 2017, , .		17
21	Estimation of the complex permittivity of liquids by means of complementary split ring resonator (CSRR) loaded transmission lines. , 2017, , .		29
22	A Review of Sensing Strategies for Microwave Sensors Based on Metamaterial-Inspired Resonators: Dielectric Characterization, Displacement, and Angular Velocity Measurements for Health Diagnosis, Telecommunication, and Space Applications. International Journal of Antennas and Propagation, 2017, 2017, 1-13.	1.2	35
23	Estimation of conductive losses in complementary split ring resonator (CSRR) loading an embedded microstrip line and applications. , 2017, , .		11
24	Miniature Microwave Notch Filters and Comparators Based on Transmission Lines Loaded with Stepped Impedance Resonators (SIRs). Micromachines, 2016, 7, 1.	2.9	37
25	Configurations of Splitter/Combiner Microstrip Sections Loaded with Stepped Impedance Resonators (SIRs) for Sensing Applications. Sensors, 2016, 16, 2195.	3.8	44
26	Coplanar waveguides loaded with symmetric and asymmetric multisection stepped impedance resonators: Modeling and potential applications. Microwave and Optical Technology Letters, 2016, 58, 722-726.	1.4	2
27	Coplanar waveguides loaded with symmetric and asymmetric pairs of slotted stepped impedance resonators: Modeling, applications, and comparison to SIRâ€loaded CPWS. Microwave and Optical Technology Letters, 2016, 58, 2741-2745.	1.4	0
28	Cascaded splitter/combiner microstrip sections loaded with complementary split ring resonators (CSRRs): Modeling, analysis and applications. , 2016, , .		10
29	Splitter/Combiner Microstrip Sections Loaded With Pairs of Complementary Split Ring Resonators (CSRRs): Modeling and Optimization for Differential Sensing Applications. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 4362-4370.	4.6	149
30	Transmission Lines Loaded With Pairs of Stepped Impedance Resonators: Modeling and Application to Differential Permittivity Measurements. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 3864-3877.	4.6	94
31	Modeling and Applications of Metamaterial Transmission Lines Loaded With Pairs of Coupled Complementary Split-Ring Resonators (CSRRs). IEEE Antennas and Wireless Propagation Letters, 2016, 15, 154-157.	4.0	83
32	Symmetry-Related Electromagnetic Properties of Resonator-Loaded Transmission Lines and Applications. Applied Sciences (Switzerland), 2015, 5, 88-113.	2.5	2
33	Recent Advances in the Modeling of Transmission Lines Loaded with Split Ring Resonators. International Journal of Antennas and Propagation, 2015, 2015, 1-13.	1.2	10
34	Dual-band epsilon-negative (ENG) transmission line metamaterials based on microstrip lines loaded with pairs of coupled complementary split ring resonators (CSRRs): Modeling, analysis and applications. , 2015, , .		7
35	Transmission line metamaterials based on pairs of coupled split ring resonators (SRRs) and complementary split ring resonators (CSRR): A comparison to the light of the lumped element equivalent circuits. , 2015, , .		7
36	Modeling Metamaterial Transmission Lines Loaded With Pairs of Coupled Split-Ring Resonators. IEEE Antennas and Wireless Propagation Letters, 2015, 14, 68-71.	4.0	58

Lijuan Su

#	Article	IF	CITATIONS
37	Transmission lines loaded with pairs of magnetically coupled stepped impedance resonators (SIRs): Modeling and application to microwave sensors. , 2014, , .		40
38	Analysis and design of an improved servo system for rubidium atomic frequency standard. Wuhan University Journal of Natural Sciences, 2013, 18, 67-72.	0.4	0