
Nicole S Webster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4671264/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A communal catalogue reveals Earth's multiscale microbial diversity. Nature, 2017, 551, 457-463.	27.8	1,942
2	Scientists' warning to humanity: microorganisms and climate change. Nature Reviews Microbiology, 2019, 17, 569-586.	28.6	1,138
3	Insights into the Coral Microbiome: Underpinning the Health and Resilience of Reef Ecosystems. Annual Review of Microbiology, 2016, 70, 317-340.	7.3	600
4	Diversity, structure and convergent evolution of the global sponge microbiome. Nature Communications, 2016, 7, 11870.	12.8	594
5	Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME Journal, 2012, 6, 564-576.	9.8	508
6	Marine sponges and their microbial symbionts: love and other relationships. Environmental Microbiology, 2012, 14, 335-346.	3.8	491
7	Minimum Information about an Uncultivated Virus Genome (MIUViG). Nature Biotechnology, 2019, 37, 29-37.	17.5	414
8	Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environmental Microbiology, 2010, 12, 2070-2082.	3.8	394
9	Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1878-87.	7.1	361
10	Phylogenetic Diversity of Bacteria Associated with the Marine Sponge Rhopaloeides odorabile. Applied and Environmental Microbiology, 2001, 67, 434-444.	3.1	322
11	Metamorphosis of a Scleractinian Coral in Response to Microbial Biofilms. Applied and Environmental Microbiology, 2004, 70, 1213-1221.	3.1	287
12	The Sponge Hologenome. MBio, 2016, 7, e00135-16.	4.1	269
13	Natural volcanic CO2 seeps reveal future trajectories for host–microbial associations in corals and sponges. ISME Journal, 2015, 9, 894-908.	9.8	268
14	Marine microbial symbiosis heats up: the phylogenetic and functional response of a sponge holobiont to thermal stress. ISME Journal, 2013, 7, 991-1002.	9.8	266
15	Could some coral reefs become sponge reefs as our climate changes?. Global Change Biology, 2013, 19, 2613-2624.	9.5	261
16	Spongeâ€ s pecific clusters revisited: a comprehensive phylogeny of spongeâ€ a ssociated microorganisms. Environmental Microbiology, 2012, 14, 517-524.	3.8	253
17	Diverse microbial communities inhabit Antarctic sponges. Environmental Microbiology, 2004, 6, 288-300.	3.8	251
18	The culturable microbial community of the Great Barrier Reef sponge Rhopaloeides odorabile is dominated by an α-Proteobacterium. Marine Biology, 2001, 138, 843-851.	1.5	247

#	Article	IF	CITATIONS
19	Temperature thresholds for bacterial symbiosis with a sponge. ISME Journal, 2008, 2, 830-842.	9.8	226
20	Metamorphosis of broadcast spawning corals in response to bacteria isolated from crustose algae. Marine Ecology - Progress Series, 2001, 223, 121-131.	1.9	213
21	The sponge microbiome project. GigaScience, 2017, 6, 1-7.	6.4	193
22	Sponge disease: a global threat?. Environmental Microbiology, 2007, 9, 1363-1375.	3.8	190
23	Evaluating the core microbiota in complex communities: A systematic investigation. Environmental Microbiology, 2017, 19, 1450-1462.	3.8	187
24	Predicting the HMA-LMA Status in Marine Sponges by Machine Learning. Frontiers in Microbiology, 2017, 8, 752.	3.5	175
25	Microbial contributions to the persistence of coral reefs. ISME Journal, 2017, 11, 2167-2174.	9.8	173
26	â€~Sponge-specific' bacteria are widespread (but rare) in diverse marine environments. ISME Journal, 2013, 7, 438-443.	9.8	161
27	Host-associated coral reef microbes respond to the cumulative pressures of ocean warming and ocean acidification. Scientific Reports, 2016, 6, 19324.	3.3	161
28	Coral reef invertebrate microbiomes correlate with the presence of photosymbionts. ISME Journal, 2013, 7, 1452-1458.	9.8	146
29	Contamination in sediments, bivalves and sponges of McMurdo Sound, Antarctica. Environmental Pollution, 2006, 143, 456-467.	7.5	145
30	Elevated seawater temperature causes a microbial shift on crustose coralline algae with implications for the recruitment of coral larvae. ISME Journal, 2011, 5, 759-770.	9.8	145
31	Increased seawater temperature increases the abundance and alters the structure of natural Vibrio populations associated with the coral Pocillopora damicornis. Frontiers in Microbiology, 2015, 6, 432.	3.5	142
32	Microbial indicators of environmental perturbations in coral reef ecosystems. Microbiome, 2019, 7, 94.	11.1	126
33	Ocean acidification reduces induction of coral settlement by crustose coralline algae. Global Change Biology, 2013, 19, 303-315.	9.5	125
34	Shifts in microbial and chemical patterns within the marine sponge <i>Aplysina aerophoba</i> during a disease outbreak. Environmental Microbiology, 2008, 10, 3366-3376.	3.8	112
35	A spongin-boring a-proteobacterium is the etiological agent of disease in the Great Barrier Reef sponge Rhopaloeides odorabile. Marine Ecology - Progress Series, 2002, 232, 305-309.	1.9	110
36	Microbial indicators as a diagnostic tool for assessing water quality and climate stress in coral reef ecosystems. Marine Biology, 2017, 164, 1.	1.5	101

#	Article	IF	CITATIONS
37	The contribution of microbial biotechnology to mitigating coral reef degradation. Microbial Biotechnology, 2017, 10, 1236-1243.	4.2	101
38	Marine biofilms constitute a bank of hidden microbial diversity and functional potential. Nature Communications, 2019, 10, 517.	12.8	100
39	The urgent need for microbiology literacy in society. Environmental Microbiology, 2019, 21, 1513-1528.	3.8	99
40	Understanding ship-grounding impacts on a coral reef: potential effects of anti-foulant paint contamination on coral recruitment. Marine Pollution Bulletin, 2002, 44, 111-117.	5.0	98
41	Characterization of a sponge microbiome using an integrative genome-centric approach. ISME Journal, 2020, 14, 1100-1110.	9.8	98
42	The effects of copper on the microbial community of a coral reef sponge. Environmental Microbiology, 2001, 3, 19-31.	3.8	95
43	Modularity and predicted functions of the global sponge-microbiome network. Nature Communications, 2019, 10, 992.	12.8	94
44	Thermal stress responses in the bacterial biosphere of the <scp>G</scp> reat <scp>B</scp> arrier <scp>R</scp> eef sponge, <i><scp>R</scp>hopaloeides odorabile</i> . Environmental Microbiology, 2012, 14, 3232-3246.	3.8	93
45	Sponge larval settlement cues: the role of microbial biofilms in a warming ocean. Scientific Reports, 2014, 4, 4072.	3.3	93
46	What do we really know about sponge-microbial symbioses?. ISME Journal, 2009, 3, 1-3.	9.8	92
47	Down under the tunic: bacterial biodiversity hotspots and widespread ammonia-oxidizing archaea in coral reef ascidians. ISME Journal, 2014, 8, 575-588.	9.8	88
48	Host-Microbe Coevolution: Applying Evidence from Model Systems to Complex Marine Invertebrate Holobionts. MBio, 2019, 10, .	4.1	88
49	Sponges to Be Winners under Near-Future Climate Scenarios. BioScience, 2018, 68, 955-968.	4.9	85
50	Bacterial community structure associated with the Antarctic soft coral, Alcyonium antarcticum. FEMS Microbiology Ecology, 2007, 59, 81-94.	2.7	83
51	Elevated seawater temperature disrupts the microbiome of an ecologically important bioeroding sponge. Molecular Ecology, 2018, 27, 2124-2137.	3.9	81
52	Site-specific variation in Antarctic marine biofilms established on artificial surfaces. Environmental Microbiology, 2006, 8, 1177-1190.	3.8	80
53	Interactive effects of temperature and <scp><i>p</i>CO</scp> ₂ on sponges: from the cradle to the grave. Global Change Biology, 2017, 23, 2031-2046.	9.5	79
54	Detection and Phylogenetic Analysis of Novel Crenarchaeote and Euryarchaeote 16S Ribosomal RNA Gene Sequences from a Great Barrier Reef Sponge. Marine Biotechnology, 2001, 3, 0600-0608.	2.4	73

#	Article	IF	CITATIONS
55	Sponge-Microbe Associations Survive High Nutrients and Temperatures. PLoS ONE, 2012, 7, e52220.	2.5	72
56	Variability in Microbial Community Composition and Function Between Different Niches Within a Coral Reef. Microbial Ecology, 2014, 67, 540-552.	2.8	68
57	Microbial community dynamics in a larval aquaculture system of the tropical rock lobster, Panulirus ornatus. Aquaculture, 2004, 242, 31-51.	3.5	67
58	The response of a boreal deep-sea sponge holobiont to acute thermal stress. Scientific Reports, 2017, 7, 1660.	3.3	67
59	A genomic view of the microbiome of coral reef demosponges. ISME Journal, 2021, 15, 1641-1654.	9.8	67
60	The larval sponge holobiont exhibits high thermal tolerance. Environmental Microbiology Reports, 2011, 3, 756-762.	2.4	66
61	Exploring the diversity-stability paradigm using sponge microbial communities. Scientific Reports, 2018, 8, 8425.	3.3	66
62	Nearâ€future ocean acidification causes differences in microbial associations within diverse coral reef taxa. Environmental Microbiology Reports, 2013, 5, 243-251.	2.4	64
63	Eutrophication has no short-term effect on the Cymbastela stipitata holobiont. Frontiers in Microbiology, 2014, 5, 216.	3.5	60
64	Chemotaxis by natural populations of coral reef bacteria. ISME Journal, 2015, 9, 1764-1777.	9.8	60
65	Disentangling the effect of host-genotype and environment on the microbiome of the coral <i>Acropora tenuis</i> . PeerJ, 2019, 7, e6377.	2.0	60
66	A complex life cycle in a warming planet: gene expression in thermally stressed sponges. Molecular Ecology, 2013, 22, 1854-1868.	3.9	59
67	Comparative Genomics Reveals Ecological and Evolutionary Insights into Sponge-Associated <i>Thaumarchaeota</i> . MSystems, 2019, 4, .	3.8	59
68	Coral Reef Bacterial Communities. , 2013, , 163-187.		58
69	Acute ecotoxicology of natural oil and gas condensate to coral reef larvae. Scientific Reports, 2016, 6, 21153.	3.3	58
70	Thermal and Sedimentation Stress Are Unlikely Causes of Brown Spot Syndrome in the Coral Reef Sponge, lanthella basta. PLoS ONE, 2012, 7, e39779.	2.5	58
71	Behavioral and morphological changes caused by thermal stress in the Great Barrier Reef sponge Rhopaloeides odorabile. Journal of Experimental Marine Biology and Ecology, 2012, 416-417, 55-60.	1.5	57
72	Exploring the Role of Microorganisms in the Disease-Like Syndrome Affecting the Sponge <i>Ianthella basta</i> . Applied and Environmental Microbiology, 2010, 76, 5736-5744.	3.1	56

#	Article	IF	CITATIONS
73	Effects of light attenuation on the sponge holobiont- implications for dredging management. Scientific Reports, 2016, 6, 39038.	3.3	56
74	Climate change alterations to ecosystem dominance: how might spongeâ€dominated reefs function?. Ecology, 2018, 99, 1920-1931.	3.2	56
75	Changes in the metabolic potential of the sponge microbiome under ocean acidification. Nature Communications, 2019, 10, 4134.	12.8	55
76	Effects of ocean acidification on the settlement and metamorphosis of marine invertebrate and fish larvae: a review. Marine Ecology - Progress Series, 2018, 606, 237-257.	1.9	54
77	Bacterial Community Dynamics in the Marine Sponge Rhopaloeides odorabile Under In Situ and Ex Situ Cultivation. Marine Biotechnology, 2011, 13, 296-304.	2.4	52
78	Same, same but different: symbiotic bacterial associations in GBR sponges. Frontiers in Microbiology, 2012, 3, 444.	3.5	52
79	Effects of suspended sediments on the sponge holobiont with implications for dredging management. Scientific Reports, 2017, 7, 4925.	3.3	52
80	Coral Reef Microorganisms in a Changing Climate. IScience, 2020, 23, 100972.	4.1	52
81	TBT contamination identified in Antarctic marine sediments. Marine Pollution Bulletin, 2004, 48, 1142-1144.	5.0	51
82	Biofilm development within a larval rearing tank of the tropical rock lobster, Panulirus ornatus. Aquaculture, 2006, 260, 27-38.	3.5	51
83	The Pathogen of the Great Barrier Reef Sponge Rhopaloeides odorabile Is a New Strain of Pseudoalteromonas agarivorans Containing Abundant and Diverse Virulence-Related Genes. Marine Biotechnology, 2015, 17, 463-478.	2.4	51
84	Characterization of a thaumarchaeal symbiont that drives incomplete nitrification in the tropical sponge <i>lanthella basta</i> . Environmental Microbiology, 2019, 21, 3831-3854.	3.8	50
85	HoloVir: A Workflow for Investigating the Diversity and Function of Viruses in Invertebrate Holobionts. Frontiers in Microbiology, 2016, 7, 822.	3.5	49
86	Crustose Coralline Algae and a Cnidarian Neuropeptide Trigger Larval Settlement in Two Coral Reef Sponges. PLoS ONE, 2012, 7, e30386.	2.5	48
87	Diverse coral reef invertebrates exhibit patterns of phylosymbiosis. ISME Journal, 2020, 14, 2211-2222.	9.8	43
88	The effects of antifoulant-paint-contaminated sediments on coral recruits and branchlets. Marine Biology, 2003, 143, 651-657.	1.5	42
89	Biogeographic variation in the microbiome of the ecologically important sponge, <i>Carteriospongia foliascens</i> . PeerJ, 2015, 3, e1435.	2.0	42
90	Reef invertebrate viromics: diversity, host specificity and functional capacity. Environmental Microbiology, 2018, 20, 2125-2141.	3.8	41

#	Article	IF	CITATIONS
91	Comparative genome-centric analysis reveals seasonal variation in the function of coral reef microbiomes. ISME Journal, 2020, 14, 1435-1450.	9.8	40
92	Strict thermal threshold identified by quantitative PCR in the sponge Rhopaloeides odorabile. Marine Ecology - Progress Series, 2011, 431, 97-105.	1.9	37
93	Microbiome analysis of a disease affecting the deep-sea sponge Geodia barretti. FEMS Microbiology Ecology, 2017, 93, .	2.7	36
94	Prevalent and persistent viral infection in cultures of the coral algal endosymbiont Symbiodinium. Coral Reefs, 2017, 36, 773-784.	2.2	36
95	Purification and Characterization of a Collagenolytic Enzyme from a Pathogen of the Great Barrier Reef Sponge, Rhopaloeides odorabile. PLoS ONE, 2009, 4, e7177.	2.5	35
96	Coral-associated viral communities show high levels of diversity and host auxiliary functions. PeerJ, 2017, 5, e4054.	2.0	34
97	PARALYTIC SHELLFISH TOXINS ARE RESTRICTED TO FEW SPECIES AMONG AUSTRALIA'S TAXONOMIC DIVERSITY OF CULTURED MICROALGAE1. Journal of Phycology, 2003, 39, 663-667.	2.3	33
98	Using a thermistor flowmeter with attached video camera for monitoring sponge excurrent speed and oscular behaviour. PeerJ, 2016, 4, e2761.	2.0	33
99	Elucidating the sponge stress response; lipids and fatty acids can facilitate survival under future climate scenarios. Global Change Biology, 2018, 24, 3130-3144.	9.5	32
100	Subcellular view of host–microbiome nutrient exchange in sponges: insights into the ecological success of an early metazoan–microbe symbiosis. Microbiome, 2021, 9, 44.	11.1	32
101	Microbiological aspects of phyllosoma rearing of the ornate rock lobster Panulirus ornatus. Aquaculture, 2007, 268, 274-287.	3.5	31
102	Cooperation, communication, and co-evolution: grand challenges in microbial symbiosis research. Frontiers in Microbiology, 2014, 5, 164.	3.5	30
103	Appearance matters: sedimentation effects on different sponge morphologies. Journal of the Marine Biological Association of the United Kingdom, 2016, 96, 481-492.	0.8	30
104	Spatial patterns of microbial communities across surface waters of the Great Barrier Reef. Communications Biology, 2020, 3, 442.	4.4	30
105	Larval Behaviours and Their Contribution to the Distribution of the Intertidal Coral Reef Sponge Carteriospongia foliascens. PLoS ONE, 2014, 9, e98181.	2.5	30
106	Microbiome dynamics in the tissue and mucus of acroporid corals differ in relation to host and environmental parameters. PeerJ, 2020, 8, e9644.	2.0	30
107	Effects of sediment smothering on the sponge holobiont with implications for dredging management. Scientific Reports, 2017, 7, 5156.	3.3	29
108	Crown-of-Thorns Sea Star Acanthaster cf. solaris Has Tissue-Characteristic Microbiomes with Potential Roles in Health and Reproduction. Applied and Environmental Microbiology, 2018, 84, .	3.1	29

#	Article	IF	CITATIONS
109	Morphological characterization of virus-like particles in coral reef sponges. PeerJ, 2018, 6, e5625.	2.0	27
110	The marine sponge lanthella basta can recover from stress-induced tissue regression. Hydrobiologia, 2012, 687, 227-235.	2.0	26
111	The bioeroding sponge Cliona orientalis will not tolerate future projected ocean warming. Scientific Reports, 2018, 8, 8302.	3.3	26
112	Visualizing the invisible: class excursions to ignite children's enthusiasm for microbes. Microbial Biotechnology, 2020, 13, 844-887.	4.2	26
113	Prevalence of tissue necrosis and brown spot lesions in a common marine sponge. Marine and Freshwater Research, 2010, 61, 484.	1.3	25
114	Small core communities and high variability in bacteria associated with the introduced ascidian Styela plicata. Symbiosis, 2013, 59, 35-46.	2.3	24
115	Establishing microbial baselines to identify indicators of coral reef health. Microbiology Australia, 2018, 39, 42.	0.4	23
116	Cryptic speciation and phylogeographic relationships in the elephant ear sponge <i>Ianthella basta</i> (Porifera, Ianthellidae) from northern Australia. Zoological Journal of the Linnean Society, 2012, 166, 225-235.	2.3	22
117	The influence of habitat on post-settlement processes, larval production and recruitment in a common coral reef sponge. Journal of Experimental Marine Biology and Ecology, 2014, 461, 162-172.	1.5	21
118	Viral ecogenomics across the Porifera. Microbiome, 2020, 8, 144.	11.1	21
119	Crossâ€generational effects of climate change on the microbiome of a photosynthetic sponge. Environmental Microbiology, 2020, 22, 4732-4744.	3.8	21
120	Phenology of sexual reproduction in the common coral reef sponge, Carteriospongia foliascens. Coral Reefs, 2014, 33, 381.	2.2	20
121	Combining morphometrics with molecular taxonomy: How different are similar foliose keratose sponges from the Australian tropics?. Molecular Phylogenetics and Evolution, 2014, 73, 23-39.	2.7	20
122	Redefining the spongeâ€symbiont acquisition paradigm: sponge microbes exhibit chemotaxis towards hostâ€derived compounds. Environmental Microbiology Reports, 2017, 9, 750-755.	2.4	20
123	A decadal analysis of bioeroding sponge cover on the inshore Great Barrier Reef. Scientific Reports, 2017, 7, 2706.	3.3	19
124	Microbial conservation in the Anthropocene. Environmental Microbiology, 2018, 20, 1925-1928.	3.8	19
125	Microbiome-mediated mechanisms contributing to the environmental tolerance of reef invertebrate species. Marine Biology, 2021, 168, 1.	1.5	19
126	Sediment tolerance mechanisms identified in sponges using advanced imaging techniques. PeerJ, 2017, 5, e3904.	2.0	19

#	Article	IF	CITATIONS
127	Vibrionaceae infection in phyllosomas of the tropical rock lobster Panulirus ornatus as detected by fluorescence in situ hybridisation. Aquaculture, 2006, 255, 173-178.	3.5	17
128	Effects of combined dredging-related stressors on sponges: a laboratory approach using realistic scenarios. Scientific Reports, 2017, 7, 5155.	3.3	16
129	Sponge Disease and Climate Change. , 2017, , 411-428.		15
130	Thermal stress modifies the marine sponge virome. Environmental Microbiology Reports, 2019, 11, 690-698.	2.4	13
131	Qualitative variation in colour morphotypes of Ianthella basta (Porifera: Verongida). Hydrobiologia, 2012, 687, 191-203.	2.0	12
132	Assessing the strength and sensitivity of the core microbiota approach on a highly diverse sponge reef. Environmental Microbiology, 2020, 22, 3985-3999.	3.8	12
133	Benthic micro―and macroâ€community succession and coral recruitment under overfishing and nutrient enrichment. Ecology, 2021, 102, e03536.	3.2	12
134	The Effects of Crude Oil and Dispersant on the Larval Sponge Holobiont. MSystems, 2019, 4, .	3.8	11
135	Testing cophylogeny between coral reef invertebrates and their bacterial and archaeal symbionts. Molecular Ecology, 2021, 30, 3768-3782.	3.9	11
136	Reef location has a greater impact than coral bleaching severity on the microbiome of Pocillopora acuta. Coral Reefs, 2022, 41, 63-79.	2.2	11
137	Comparative metabolomic analysis reveals shared and unique chemical interactions in sponge holobionts. Microbiome, 2022, 10, 22.	11.1	11
138	Taxonomic, functional and expression analysis of viral communities associated with marine sponges. PeerJ, 2021, 9, e10715.	2.0	10
139	Incongruence between the distribution of a common coral reef sponge and photosynthesis. Marine Ecology - Progress Series, 2011, 423, 95-100.	1.9	8
140	Integrating novel tools to elucidate the metabolic basis of microbial symbiosis in reef holobionts. Marine Biology, 2021, 168, 1.	1.5	8
141	Recruitment of Antarctic marine eukaryotes onto artificial surfaces. Polar Biology, 2006, 30, 1-10.	1.2	7
142	Bacillus insecticides are not acutely harmful to corals and sponges. Marine Ecology - Progress Series, 2009, 381, 157-165.	1.9	7
143	Draft Genome Sequence of <i>Pseudoalteromonas</i> sp. Strain NW 4327 (MTCC 11073, DSM 25418), a Pathogen of the Great Barrier Reef Sponge <i>Rhopaloeides odorabile</i> . Genome Announcements, 2014, 2, .	0.8	6
144	In situ responses of the sponge microbiome to ocean acidification. FEMS Microbiology Ecology, 2018, 94, .	2.7	6

#	Article	IF	CITATIONS
145	Evidence for genetic structuring and limited dispersal ability in the Great Barrier Reef sponge Carteriospongia foliascens. Coral Reefs, 2020, 39, 39-46.	2.2	5
146	Simulated future conditions of ocean warming and acidification disrupt the microbiome of the calcifying foraminifera <scp><i>Marginopora vertebralis</i></scp> across life stages. Environmental Microbiology Reports, 2020, 12, 693-701.	2.4	5
147	Editorial: special issue on sponge microbiome. FEMS Microbiology Ecology, 2020, 96, .	2.7	4
148	Gene correlation networks reveal the transcriptomic response to elevated nitrogen in a photosynthetic sponge. Molecular Ecology, 2020, 29, 1452-1462.	3.9	4
149	Novel reference transcriptomes for the sponges Carteriospongia foliascens and Cliona orientalis and associated algal symbiont Gerakladium endoclionum. Coral Reefs, 2021, 40, 9-13.	2.2	3
150	Conceptual and methodological advances for holobiont research. Environmental Microbiology Reports, 2017, 9, 30-32.	2.4	2
151	Spotlight on how microbes influence their host's behavior. Environmental Microbiology, 2019, 21, 3185-3187.	3.8	2
152	The marine sponge lanthella basta can recover from stress-induced tissue regression. , 2011, , 227-235.		2
153	Impact of global climate change on marine bacterial symbioses and disease. Microbiology Australia, 2009, 30, 78.	0.4	1
154	Qualitative variation in colour morphotypes of Ianthella basta (Porifera: Verongida). , 2011, , 191-203.		0
155	Microbial Surface Biofilm Responds to the Growth-Reproduction-Senescence Cycle of the Dominant Coral Reef Macroalgae Sargassum spp Life, 2021, 11, 1199.	2.4	Ο