Simon C Parkinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4671260/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals. Nature Energy, 2018, 3, 589-599.	19.8	377
2	Connecting the sustainable development goals by their energy inter-linkages. Environmental Research Letters, 2018, 13, 033006.	2.2	263
3	Global exposure and vulnerability to multi-sector development and climate change hotspots. Environmental Research Letters, 2018, 13, 055012.	2.2	162
4	Global resource potential of seasonal pumped hydropower storage for energy and water storage. Nature Communications, 2020, 11, 947.	5.8	121
5	Online voltage security assessment considering comfort-constrained demand response control of distributed heat pump systems. Applied Energy, 2012, 96, 104-114.	5.1	108
6	Hierarchical market integration of responsive loads as spinning reserve. Applied Energy, 2013, 104, 229-238.	5.1	77
7	Energy sector water use implications of a 2 °C climate policy. Environmental Research Letters, 2016, 11, 034011.	2.2	72
8	Spatial and temporal synchronization of water and energy systems: Towards a single integrated optimization model for long-term resource planning. Applied Energy, 2018, 210, 499-517.	5.1	72
9	A high-resolution gridded dataset to assess electrification in sub-Saharan Africa. Scientific Data, 2019, 6, 110.	2.4	65
10	A multi-criteria model analysis framework for assessing integrated water-energy system transformation pathways. Applied Energy, 2018, 210, 477-486.	5.1	57
11	A Continental‣cale Hydroeconomic Model for Integrating Waterâ€Energy‣and Nexus Solutions. Water Resources Research, 2018, 54, 7511-7533.	1.7	57
12	Co-designing Indus Water-Energy-Land Futures. One Earth, 2019, 1, 185-194.	3.6	54
13	Comfort-Constrained Distributed Heat Pump Management. Energy Procedia, 2011, 12, 849-855.	1.8	49
14	Balancing clean water-climate change mitigation trade-offs. Environmental Research Letters, 2019, 14, 014009.	2.2	48
15	Transboundary cooperation a potential route to sustainable development in the Indus basin. Nature Sustainability, 2021, 4, 331-339.	11.5	47
16	Satellite Observations Reveal Inequalities in the Progress and Effectiveness of Recent Electrification in Sub-Saharan Africa. One Earth, 2020, 2, 364-379.	3.6	40
17	Vulnerability of existing and planned coal-fired power plants in Developing Asia to changes in climate and water resources. Energy and Environmental Science, 2019, 12, 3164-3181.	15.6	38
18	Integrating ocean wave energy at large-scales: A study of the US Pacific Northwest. Renewable Energy, 2015. 76. 551-559.	4.3	35

SIMON C PARKINSON

#	Article	IF	CITATIONS
19	Spatial analysis of energy use and GHG emissions from cereal production in India. Science of the Total Environment, 2019, 654, 841-849.	3.9	35
20	Energy efficient communication networks design for demand response in smart grid. , 2011, , .		32
21	Robust response to hydro-climatic change in electricity generation planning. Climatic Change, 2015, 130, 475-489.	1.7	32
22	A reduced-form approach for representing the impacts of wind and solar PV deployment on the structure and operation of the electricity system. Energy Economics, 2017, 64, 651-664.	5.6	31
23	The NExus Solutions Tool (NEST) v1.0: an open platform for optimizing multi-scale energy–water–land system transformations. Geoscientific Model Development, 2020, 13, 1095-1121.	1.3	31
24	Active power regulation of wind power systems through demand response. Science China Technological Sciences, 2012, 55, 1667-1676.	2.0	26
25	Wind integration in self-regulating electric load distributions. Energy Systems, 2012, 3, 341-377.	1.8	24
26	Climate and human development impacts on municipal water demand: A spatially-explicit global modeling framework. Environmental Modelling and Software, 2016, 85, 266-278.	1.9	24
27	Integrated Solutions for the Water-Energy-Land Nexus: Are Global Models Rising to the Challenge?. Water (Switzerland), 2019, 11, 2223.	1.2	24
28	A test bed for self-regulating distribution systems: Modeling integrated renewable energy and demand response in the GridLAB-D/MATLAB environment. , 2012, , .		23
29	Impacts of Groundwater Constraints on Saudi Arabia's Low-Carbon Electricity Supply Strategy. Environmental Science & Technology, 2016, 50, 1653-1662.	4.6	23
30	Economic Potential for Rainfed Agrivoltaics in Groundwater-Stressed Regions. Environmental Science and Technology Letters, 2020, 7, 525-531.	3.9	21
31	Hydropower and seasonal pumped hydropower storage in the Indus basin:pros and cons. Journal of Energy Storage, 2021, 41, 102916.	3.9	21
32	Quantifying the potential for reservoirs to secure future surface water yields in the world's largest river basins. Environmental Research Letters, 2018, 13, 044026.	2.2	20
33	Long-term energy planning with uncertain environmental performance metrics. Applied Energy, 2015, 147, 402-412.	5.1	19
34	Decarbonization pathways and energy investment needs for developing Asia in line with â€~well below' 2°C. Climate Policy, 2020, 20, 234-245.	2.6	18
35	Toward low carbon energy systems: The convergence of wind power, demand response, and the electricity grid. , 2012, , .		14
36	Monitoring hydropower reliability in Malawi with satellite data and machine learning. Environmental Research Letters, 2020, 15, 014011.	2.2	14

#	Article	IF	CITATIONS
37	Role of energy storage in energy and water security in Central Asia. Journal of Energy Storage, 2022, 50, 104587.	3.9	9
38	Guiding urban water management towards 1.5 °C. Npj Clean Water, 2021, 4, .	3.1	7
39	Balancing smart irrigation and hydropower investments for sustainable water conservation in the Indus basin. Environmental Science and Policy, 2022, 135, 147-161.	2.4	4