Tsutomu Nakazato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4671119/publications.pdf Version: 2024-02-01

TSUTOMU NAKAZATO

#	Article	IF	CITATIONS
1	Production of biodiesel fuel from canola oil with dimethyl carbonate using an active sodium methoxide catalyst prepared by crystallization. Bioresource Technology, 2014, 163, 360-363.	9.6	35
2	Effect of cohesive powders on the elutriation of particles from a fluid bed. Chemical Engineering Science, 2004, 59, 2777-2782.	3.8	28
3	Removal of SO ₂ in Semiâ€Dry Flue Gas Desulfurization Process with a Powderâ€Particle Spouted Bed. Canadian Journal of Chemical Engineering, 2004, 82, 110-115.	1.7	16
4	H2S Removal by Fine Limestone Particles in a Powderâ^'Particle Fluidized Bed. Industrial & Engineering Chemistry Research, 2003, 42, 3413-3419.	3.7	12
5	Continuous production of hydroxyapatite powder by drip pyrolysis in a fluidized bed. Advanced Powder Technology, 2012, 23, 632-639.	4.1	11
6	Optimization of Reaction Conditions of Two-Step Batch Operation for Biodiesel Fuel Production Using KOH Catalyst. Journal of Chemical Engineering of Japan, 2010, 43, 90-94.	0.6	10
7	Semi-dry Process for Production of Very Fine Calcium Carbonate Powder by a Powder-Particle Spouted Bed Journal of Chemical Engineering of Japan, 2002, 35, 409-414.	0.6	9
8	Separation rate of fine powders from a circulating powder-particle fluidized bed (CPPFB). Powder Technology, 2004, 146, 46-55.	4.2	9
9	Visualization of defluidization phenomena caused by gas switching in a two-dimensional fluidized bed. Powder Technology, 2013, 237, 153-159.	4.2	9
10	Solid circulation rate in a circulating fluidized bed in the presence of fine powders. Chemical Engineering Science, 2006, 61, 766-774.	3.8	8
11	Total Solid Entrainment Rate in a Circulating Powder-Particle Fluidized Bed Journal of Chemical Engineering of Japan, 2003, 36, 1405-1409.	0.6	7
12	Evaluation of the turnover times of the bed particles and of the fine powders in a circulating powder-particle fluidized bed (CPPFB). Powder Technology, 2005, 153, 81-89.	4.2	7
13	Penetration of fine cohesive powders through a powder-particle fluidized bed. Advanced Powder Technology, 2006, 17, 433-451.	4.1	7
14	Reduction of Methanol Crossover by a Pt Film Directly Sputtered on Nafion Membrane. Electrochemistry, 2005, 73, 67-70.	1.4	6
15	Effects of Increase in Gas Volume on the Fluidization Properties in Fluidized Bed Reactors. Journal of Chemical Engineering of Japan, 2009, 42, S137-S141.	0.6	6
16	Mechanism of the Initial Phenomena of Defluidization Caused by Switching Fluidizing Gases. Journal of Chemical Engineering of Japan, 2014, 47, 241-247.	0.6	6
17	Entrainment Rates and Elutriation Rate Constants of Bed Particles and Group C Fine Powder in a Fluidized Bed and in a Circulating Fluidized Bed. Journal of Chemical Engineering of Japan, 2008, 41, 678-685.	0.6	6
18	Elimination of Defluidization Caused by Reactions Involving a Volume Reduction in a Fluidized Catalyst Bed and Improvement of Fluidization by Two-Stage Feeding. Journal of Chemical Engineering of Japan, 2009, 42, 733-738.	0.6	6

Тѕитоми Наказато

#	Article	IF	CITATIONS
19	Analysis of fluidization quality of a fluidized bed with staged gas feed for reactions involving gasâ€volume reduction. AICHE Journal, 2010, 56, 2297-2303.	3.6	4
20	Decrease in the fluidization quality of fluidized beds containing binary mixtures of different catalyst particles. Chemical Engineering Science, 2013, 96, 98-105.	3.8	4
21	Pressure Fluctuation Analysis of the Defluidization Caused by a Reaction Involving Gas-Volume Reduction in a Fluidized Catalyst Bed. Journal of Chemical Engineering of Japan, 2015, 48, 436-443.	0.6	4
22	Moisture Absorption Characteristics of Porous Calcium Oxide Powders Produced by Calcination of Pulverized Limestone with Inorganic Salts Using a Powder-Particle Fluidized Bed. Journal of the Ceramic Society of Japan, 2007, 115, 443-446.	1.3	3
23	Multilayer adhering model for holdup and separation behavior of fine particles in a powder-particle fluidized bed. Powder Technology, 2015, 274, 289-295.	4.2	3
24	Analysis of Transient Defluidization Due to Gas Adsorption on Fluidized Particles. Journal of Chemical Engineering of Japan, 2020, 53, 10-16.	0.6	3
25	Dynamic Evaluation of Membrane-Electrode Assembly in Operation of a Direct Methanol Fuel Cell by Simultaneous Measurements of Crossovers of Methanol and CO2. Journal of Chemical Engineering of Japan, 2007, 40, 348-355.	0.6	3
26	Continuous Production of N–F-Codoped Titanium Oxide Photocatalyst Powders via Drip Pyrolysis in a Fluidized Bed under Reduction Conditions. Journal of Chemical Engineering of Japan, 2012, 45, 749-756.	0.6	2
27	Prevention of Defluidization by Recycling Unreacted Gas for Reactions Involving Gas Volume Reduction in a Fluidized Bed. Kagaku Kogaku Ronbunshu, 2012, 38, 272-277.	0.3	2
28	Comparison of i-V Performances in a Direct Methanol Fuel Cell at Different Flow Phases of Methanol. Kagaku Kogaku Ronbunshu, 2005, 31, 62-67.	0.3	1
29	Preparation of Hematite by Drip Thermal Oxidation Using a Fluidized Bed for Conversion to Electromagnetic-Wave-Absorptive Magnetite. Materials Science Forum, 2013, 761, 49-54.	0.3	1
30	Methanol Diffusion through a Porous Plate in Anode Backing of a Passive Direct Methanol Fuel Cell under Closed Circuit Conditions. Journal of Chemical Engineering of Japan, 2007, 40, 1108-1112.	0.6	1
31	Range of Particle Properties Inducing Defluidization after Gas Switching in a Fluidized Bed. Kagaku Kogaku Ronbunshu, 2018, 44, 229-235.	0.3	1
32	Reaction analysis and global kinetics of partial oxidation of methane using Ni–hydroxyapatite composite catalysts. Chemical Engineering Journal Advances, 2022, 9, 100210.	5.2	1
33	Preface to the Special Issue for Multiscale Multiphase Process Engineering (MMPE) 2011. Journal of Chemical Engineering of Japan, 2012, 45, 631.	0.6	Ο
34	Preparation of the Catalyst for Methanol Steam Reforming from Cr–Zr Amorphous Alloys. Materials Science Forum, 0, 761, 7-10.	0.3	0
35	Time-Series Analysis for Kinetic Interpretation of Catalytic Cracking of 1-Octene with a Model Involving Dominant Reactions. Applied Mechanics and Materials, 0, 625, 315-319.	0.2	0
36	Effect of Dimeric Methyl Ester Concentration on Kinematic Viscosity of Biodiesel Fuel. Journal of Chemical Engineering of Japan, 2016, 49, 379-384.	0.6	0

#	Article	IF	CITATIONS
37	Hydrodynamic Performance of a Circulating Powder-Particle Fluidized Bed. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2004, 12, 153-154.	0.0	0
38	Moisture Absorptivity of Calcium Oxide Powders Produced by Powder-Particle Fluidized Bed. Kagaku Kogaku Ronbunshu, 2010, 36, 80-85.	0.3	0