Anna Zajakina

List of Publications by Citations

Source: https://exaly.com/author-pdf/4671073/anna-zajakina-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

17	219	7	14
papers	citations	h-index	g-index
22	279	5.2	2.28
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
17	Mutilation of RNA phage Qbeta virus-like particles: from icosahedrons to rods. <i>FEBS Letters</i> , 2000 , 482, 261-4	3.8	58
16	RNA phage Q beta coat protein as a carrier for foreign epitopes. <i>Intervirology</i> , 1996 , 39, 9-15	2.5	39
15	Mosaic Qbeta coats as a new presentation model. <i>FEBS Letters</i> , 1998 , 431, 7-11	3.8	37
14	Semliki Forest virus biodistribution in tumor-free and 4T1 mammary tumor-bearing mice: a comparison of transgene delivery by recombinant virus particles and naked RNA replicon. <i>Cancer Gene Therapy</i> , 2012 , 19, 579-87	5.4	17
13	Enzymatic activity of circular sortase A under denaturing conditions: An advanced tool for protein ligation. <i>Biochemical Engineering Journal</i> , 2014 , 82, 200-209	4.2	10
12	SI-CLP inhibits the growth of mouse mammary adenocarcinoma by preventing recruitment of tumor-associated macrophages. <i>International Journal of Cancer</i> , 2020 , 146, 1396-1408	7.5	9
11	High efficiency of alphaviral gene transfer in combination with 5-fluorouracil in a mouse mammary tumor model. <i>BMC Cancer</i> , 2014 , 14, 460	4.8	8
10	Proteasomal degradation of core protein variants from chronic hepatitis B patients. <i>Journal of Medical Virology</i> , 2007 , 79, 1312-21	19.7	7
9	Translation of hepatitis B virus (HBV) surface proteins from the HBV pregenome and precore RNAs in Semliki Forest virus-driven expression. <i>Journal of General Virology</i> , 2004 , 85, 3343-3351	4.9	7
8	Application of Alphaviral Vectors for Immunomodulation in Cancer Therapy. <i>Current Pharmaceutical Design</i> , 2017 , 23, 4906-4932	3.3	7
7	Characterization of Novel Biopolymer Blend Mycocel from Plant Cellulose and Fungal Fibers. <i>Polymers</i> , 2021 , 13,	4.5	7
6	Generation and Functional Analysis of Semliki Forest Virus Vectors Encoding TNF-land IFN-land	8.4	5
5	Comparative protein profiling of B16 mouse melanoma cells susceptible and non-susceptible to alphavirus infection: Effect of the tumor microenvironment. <i>Cancer Biology and Therapy</i> , 2016 , 17, 103.	5- 10 50	3
4	Magnetic nanoparticles for efficient cell transduction with Semliki Forest virus. <i>Journal of Virological Methods</i> , 2017 , 245, 28-34	2.6	2
3	A Semliki Forest virus expression system as a model for investigating the nuclear import and export of hepatitis B virus nucleocapsid protein. <i>Acta Virologica</i> , 2014 , 58, 173-9	2.2	1
2	N-Terminal Modification of Gly-His-Tagged Proteins with Azidogluconolactone. <i>ChemBioChem</i> , 2021 , 22, 3199-3207	3.8	1
1	Journal of Photochemistry and Photobiology, 2022 , 10, 100120	0.8	O