Chung-Chieh Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4669028/publications.pdf

Version: 2024-02-01

687363 839539 28 402 13 18 citations h-index g-index papers 31 31 31 249 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Sampled-data modeling and analysis of one-cycle control and charge control. IEEE Transactions on Power Electronics, 2001, 16, 345-350.	7.9	28
2	Unified Discrete-Time Modeling of Buck Converter in Discontinuous Mode. IEEE Transactions on Power Electronics, 2011, 26, 2335-2342.	7.9	27
3	Sampled-data modelling and analysis of the power stage of PWM DC-DC converters. International Journal of Electronics, 2001, 88, 347-369.	1.4	26
4	Critical conditions for a class of switched linear systems based on harmonic balance: applications to DC-DC converters. Nonlinear Dynamics, 2012, 70, 1767-1789.	5.2	26
5	Subharmonic Instability Limits for the Peak-Current-Controlled Buck Converter With Closed Voltage Feedback Loop. IEEE Transactions on Power Electronics, 2015, 30, 1085-1092.	7.9	26
6	Robust Feedback Stabilization of Limit Cycles in PWM DC-DC Converters. Nonlinear Dynamics, 2002, 27, 295-309.	5.2	23
7	Subharmonic Stability Limits for the Buck Converter With Ripple-Based Constant On-Time Control and Feedback Filter. IEEE Transactions on Power Electronics, 2014, 29, 2135-2142.	7.9	22
8	Sampled-data modeling and analysis of closed-loop PWM DC-DC converters. , 0, , .		19
9	Closed-Form Critical Conditions of Subharmonic Oscillations for Buck Converters. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60, 1967-1974.	5.4	19
10	Subharmonic Instability Limits for the Peak-Current-Controlled Boost, Buck–Boost, Flyback, and SEPIC Converters With Closed Voltage Feedback Loop. IEEE Transactions on Power Electronics, 2017, 32, 4048-4055.	7.9	18
11	Sampledâ€data poles, zeros, and modeling for currentâ€mode control. International Journal of Circuit Theory and Applications, 2013, 41, 111-127.	2.0	17
12	Instability conditions for a class of switched linear systems with switching delays based on sampled-data analysis: applications to DC–DC converters. Nonlinear Dynamics, 2014, 77, 185-208.	5.2	17
13	Closed-Form Critical Conditions of Instabilities for Constant On-Time Controlled Buck Converters. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59, 3090-3097.	5.4	16
14	Saddle-node bifurcation in the buck converter with constant current load. Nonlinear Dynamics, 2012, 69, 1739-1750.	5.2	15
15	Switching Frequency Determination of DC–DC Converters With Hysteretic Control. IEEE Transactions on Power Electronics, 2018, 33, 2723-2729.	7.9	11
16	Bifurcation boundary conditions for current programmed PWM DC–DC converters at light loading. International Journal of Electronics, 2012, 99, 1365-1393.	1.4	10
17	Using Nyquist or Nyquist-like plot to predict three typical instabilities in DC–DC converters. Journal of the Franklin Institute, 2013, 350, 3293-3312.	3.4	10
18	Subharmonic Instability Limits for <inline-formula><tex-math>\${m V}^2\$</tex-math></inline-formula> -Controlled Buck Converter With Outer Loop Closed/Open. IEEE Transactions on Power Electronics, 2016, 31, 1657-1664.	7.9	10

#	Article	IF	CITATIONS
19	Output regulation of DC-DC switching converters using discrete-time integral control. , 1999, , .		9
20	Exact orbital stability analysis of static and dynamic ramp compensations in DC-DC converters. , 0, , .		8
21	Asymmetric Instability Conditions for Peak and Valley Current Programmed Converters at Light Loading. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61, 922-929.	5.4	7
22	Critical conditions of saddle-node bifurcations in switching DC–DC converters. International Journal of Electronics, 2013, 100, 1147-1174.	1.4	6
23	Exact sampled-data analysis of quasi-resonant converters with finite filter inductance and capacitance. International Journal of Circuit Theory and Applications, 2002, 30, 49-63.	2.0	5
24	Limit cycle stabilization in PWM DC-DC converters. , 0, , .		4
25	Unified subharmonic oscillation conditions for peak or average current mode control. International Journal of Circuit Theory and Applications, 2015, 43, 995-1014.	2.0	4
26	Prediction of Subharmonic Oscillation in <inline-formula><tex-math notation="LaTeX"> $f\{m \ r^2$ </tex-math></inline-formula> Controlled Buck Converters in CCM. IEEE Transactions on Power Electronics, 2015, 30, 4035-4036.	7.9	3
27	Sampled-data poles and zeros of buck and boost converters. , 0, , .		0
28	Sampled-data modeling and analysis of one-cycle control and charge control. , 0, , .		0