Michael Heap

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4668990/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The thermal properties of hydrothermally altered andesites from La Soufrière de Guadeloupe (Eastern) Tj ETQq1 1	8:884314	4_rgBT /Ov∈
2	Thermal impact of dykes on ignimbrite and implications for fluid flow compartmentalisation in calderas. Volcanica, 2022, 5, 55-73.	0.6	0
3	Thermal impact of dykes on ignimbrite and implications for fluid flow channelisation in a caldera. Volcanica, 2022, 5, 75-93.	0.6	1
4	Hidden mechanical weaknesses within lava domes provided by buried high-porosity hydrothermal alteration zones. Scientific Reports, 2022, 12, 3202.	1.6	19
5	Nanoindentation-based characterization of micromechanical properties of greenish mudstone from deep Fushun West open-pit mine (Fushun city, China). Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8, 1.	1.3	3
6	High strain rate damage in porous andesite. Journal of Volcanology and Geothermal Research, 2022, 427, 107551.	0.8	0
7	The tensile strength of hydrothermally altered volcanic rocks. Journal of Volcanology and Geothermal Research, 2022, 428, 107576.	0.8	13
8	The Permeability of Porous Volcanic Rock Through the Brittleâ€Đuctile Transition. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	4
9	Volcanotectonics: the tectonics and physics of volcanoes and their eruption mechanics. Bulletin of Volcanology, 2022, 84, .	1.1	7
10	Whole-rock oxygen isotope ratios as a proxy for the strength and stiffness of hydrothermally altered volcanic rocks. Bulletin of Volcanology, 2022, 84, .	1.1	5
11	Microwave-assisted damage and fracturing of hard rocks and its implications for effective mineral resources recovery. Minerals Engineering, 2021, 160, 106663.	1.8	28
12	A model for permeability evolution during volcanic welding. Journal of Volcanology and Geothermal Research, 2021, 409, 107118.	0.8	18
13	The fire resistance of high-strength concrete containing natural zeolites. Cement and Concrete Composites, 2021, 116, 103897.	4.6	24
14	A multi-decadal view of the heat and mass budget of a volcano in unrest: La Soufrière de Guadeloupe (French West Indies). Bulletin of Volcanology, 2021, 83, 1.	1.1	20
15	Crustal Fault Zones (CFZ) as Geothermal Power Systems: A Preliminary 3D THM Model Constrained by a Multidisciplinary Approach. Geofluids, 2021, 2021, 1-24.	0.3	13
16	Petrophysical characterisation of volcanic ejecta to constrain subsurface lithological heterogeneities: implications for edifice stability at basaltic volcanoes. Volcanica, 2021, 4, 41-66.	0.6	4
17	Mechanical Compaction of Crustal Analogs Made of Sintered Glass Beads: The Influence of Porosity and Grain Size. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021321.	1.4	22
18	The mechanical behaviour and failure modes of volcanic rocks: a review. Bulletin of Volcanology, 2021, 83, 1.	1.1	68

#	Article	IF	CITATIONS
19	An auto-detection network to provide an automated real-time early warning of rock engineering hazards using microseismic monitoring. International Journal of Rock Mechanics and Minings Sciences, 2021, 140, 104685.	2.6	18
20	Analysis of capillary water imbibition in sandstone via a combination of nuclear magnetic resonance imaging and numerical DEM modeling. Engineering Geology, 2021, 285, 106070.	2.9	26
21	The Brittleâ€Ductile Transition in Porous Limestone: Failure Mode, Constitutive Modeling of Inelastic Deformation and Strain Localization. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021602.	1.4	14
22	Time-dependent deformation and failure of granite based on the virtual crack incorporated numerical manifold method. Computers and Geotechnics, 2021, 133, 104070.	2.3	21
23	A Numerical Meso-Scale Elasto-Plastic Damage Model for Modeling the Deformation and Fracturing of Sandstone Under Cyclic Loading. Rock Mechanics and Rock Engineering, 2021, 54, 4569-4591.	2.6	27
24	Hydrothermal alteration can result in pore pressurization and volcano instability. Geology, 2021, 49, 1348-1352.	2.0	36
25	A three-dimensional mesoscale model for progressive time-dependent deformation and fracturing of brittle rock with application to slope stability. Computers and Geotechnics, 2021, 135, 104160.	2.3	31
26	The force required to operate the plunger on a French press. American Journal of Physics, 2021, 89, 769-775.	0.3	6
27	Alterationâ€Induced Volcano Instability at La Soufrière de Guadeloupe (Eastern Caribbean). Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022514.	1.4	34
28	A meso-mechanical approach to time-dependent deformation and fracturing of partially saturated sandstone. International Journal of Rock Mechanics and Minings Sciences, 2021, 145, 104840.	2.6	6
29	The tensile strength of volcanic rocks: Experiments and models. Journal of Volcanology and Geothermal Research, 2021, 418, 107348.	0.8	16
30	Mechanical and topographic factors influencing lava dome growth and collapse. Journal of Volcanology and Geothermal Research, 2021, 420, 107398.	0.8	15
31	Full-field quantification of time-dependent and -independent deformation and fracturing of double-notch flawed rock using digital image correlation. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7, .	1.3	18
32	Publishing a Special Issue of Reports from the volcano observatories in Latin America. Volcanica, 2021, 4, i-vi.	0.6	3
33	The Effects of Planetary and Stellar Parameters on Brittle Lithospheric Thickness. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006952.	1.5	3
34	Calculating the cohesion and internal friction angle of volcanic rocks and rock masses. Volcanica, 2021, 4, 279-293.	0.6	12
35	A toolbox for identifying the expression of dome-forming volcanism on exoplanets. Planetary and Space Science, 2020, 180, 104762.	0.9	3
36	A three-dimensional numerical meso-approach to modeling time-independent deformation and fracturing of brittle rocks. Computers and Geotechnics, 2020, 117, 103274.	2.3	43

#	Article	IF	CITATIONS
37	Conservation and restoration of St. George's church (Nördlingen, Germany), a 15th century Gothic church built using suevite from the Ries impact crater. Journal of Cultural Heritage, 2020, 41, 256-263.	1.5	4
38	Towards more realistic values of elastic moduli for volcano modelling. Journal of Volcanology and Geothermal Research, 2020, 390, 106684.	0.8	93
39	Quantifying the role of hydrothermal alteration in creating geothermal and epithermal mineral resources: The Ohakuri ignimbrite (TaupŕVolcanic Zone, New Zealand). Journal of Volcanology and Geothermal Research, 2020, 390, 106703.	0.8	45
40	Determination of permeability using a classic Darcy water column. American Journal of Physics, 2020, 88, 20-24.	0.3	12
41	Imaging strain localisation in porous andesite using digital volume correlation. Journal of Volcanology and Geothermal Research, 2020, 404, 107038.	0.8	14
42	Insights into lava dome and spine extrusion using analogue sandbox experiments. Earth and Planetary Science Letters, 2020, 551, 116571.	1.8	8
43	Micro-crack propagation and coalescence during time-dependent deformation of granite based on numerical manifold method. IOP Conference Series: Earth and Environmental Science, 2020, 570, 022064.	0.2	0
44	Mesoscopic Damage and Fracturing of Heterogeneous Brittle Rocks Based on Three-dimensional Polycrystalline Discrete Element Method. Rock Mechanics and Rock Engineering, 2020, 53, 5389-5409.	2.6	51
45	Timescales of porosity and permeability loss by solid-state sintering. Earth and Planetary Science Letters, 2020, 549, 116533.	1.8	11
46	Cyclic shear zone cataclasis and sintering during lava dome extrusion: Insights from Chaos Crags, Lassen Volcanic Center (USA). Journal of Volcanology and Geothermal Research, 2020, 401, 106935.	0.8	8
47	A geophysical index to map alteration, permeability, and mechanical properties within volcanoes. Application to the soft volcanic rocks from Whakaari/White Island (New Zealand). Journal of Volcanology and Geothermal Research, 2020, 401, 106945.	0.8	11
48	Petrophysical properties, mechanical behaviour, and failure modes of impact melt-bearing breccia (suevite) from the Ries impact crater (Germany). Icarus, 2020, 349, 113873.	1.1	6
49	Mesoscopic time-dependent behavior of rocks based on three-dimensional discrete element grain-based model. Computers and Geotechnics, 2020, 121, 103472.	2.3	43
50	Barite Growth Rates as a Function of Crystallographic Orientation, Temperature, And Solution Saturation State. Crystal Growth and Design, 2020, 20, 3663-3672.	1.4	9
51	Pressure Controlled Permeability in a Conduit Filled with Fractured Hydrothermal Breccia Reconstructed from Ballistics from Whakaari (White Island), New Zealand. Geosciences (Switzerland), 2020, 10, 138.	1.0	37
52	The thermal properties of porous andesite. Journal of Volcanology and Geothermal Research, 2020, 398, 106901.	0.8	29
53	Strainâ€Dependent Rheology of Silicate Melt Foams: Importance for Outgassing of Silicic Lavas. Journal of Geophysical Research: Solid Earth, 2019, 124, 8167-8186.	1.4	10
54	The Permeability Evolution of Tuffisites and Implications for Outgassing Through Dense Rhyolitic Magma. Journal of Geophysical Research: Solid Earth, 2019, 124, 8281-8299.	1.4	29

65

#	Article	IF	CITATIONS
55	Influence of alteration on the mechanical behaviour and failure mode of andesite: implications for shallow seismicity and volcano monitoring. Bulletin of Volcanology, 2019, 81, 1.	1.1	38
56	Hydrothermal alteration of andesitic lava domes can lead to explosive volcanic behaviour. Nature Communications, 2019, 10, 5063.	5.8	76
57	A general model for welding of ash particles in volcanic systems validated using in situ X-ray tomography. Earth and Planetary Science Letters, 2019, 525, 115726.	1.8	30
58	P- and S-wave velocity of dry, water-saturated, and frozen basalt: Implications for the interpretation of Martian seismic data. Icarus, 2019, 330, 11-15.	1.1	13
59	The influence of sample geometry on the permeability of a porous sandstone. Geoscientific Instrumentation, Methods and Data Systems, 2019, 8, 55-61.	0.6	6
60	The Fragility of Volcán de Colima—A Material Constraint. Active Volcanoes of the World, 2019, , 241-266.	1.0	6
61	Acidâ€Induced Dissolution of Andesite: Evolution of Permeability and Strength. Journal of Geophysical Research: Solid Earth, 2019, 124, 257-273.	1.4	40
62	On the geothermal potential of crustal fault zones: a case study from the Pontgibaud area (French) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
63	Heat flow density estimates in the Upper Rhine Graben using laboratory measurements of thermal conductivity on sedimentary rocks. Geothermal Energy, 2019, 7, .	0.9	18
64	A proxy for magmatic foams: FOAMGLAS®, a closed-cell glass insulation. Journal of Non-Crystalline Solids: X, 2019, 1, 100001.	0.5	5
65	Rock mass strength and elastic modulus of the Buntsandstein: An important lithostratigraphic unit for geothermal exploitation in the Upper Rhine Graben. Geothermics, 2019, 77, 236-256.	1.5	41
66	Petrophysical properties of the Muschelkalk from the Soultz-sous-Forêts geothermal site (France), an important lithostratigraphic unit for geothermal exploitation in the Upper Rhine Graben. Geothermal Energy, 2019, 7, .	0.9	11
	Thermal Creaking in Martenbu Creative Maniteured Heing Direct Marie Vale site. Code Marie		

67	Thermal Cracking in Westerly Granite Monitored Using Direct Wave Velocity, Coda Wave Interferometry, and Acoustic Emissions. Journal of Geophysical Research: Solid Earth, 2018, 123, 2246-2261.	1.4	107
68	A generic model for the shallow velocity structure of volcanoes. Journal of Volcanology and Geothermal Research, 2018, 356, 114-126.	0.8	52
69	Complex conductivity of volcanic rocks and the geophysical mapping of alteration in volcanoes. Journal of Volcanology and Geothermal Research, 2018, 357, 106-127.	0.8	58
70	Permeability of volcanic rocks to gas and water. Journal of Volcanology and Geothermal Research, 2018, 354, 29-38.	0.8	37
71	Hot pressing in conduit faults during lava dome extrusion: Insights from Mount St. Helens 2004–2008. Earth and Planetary Science Letters, 2018, 482, 171-180.	1.8	22

72The Modeling of Time-Dependent Deformation and Fracturing of Brittle Rocks Under Varying
Confining and Pore Pressures. Rock Mechanics and Rock Engineering, 2018, 51, 3241-3263.2.6

#	Article	IF	CITATIONS
73	The Influence of Water Saturation on the Short- and Long-Term Mechanical Behavior of Red Sandstone. Rock Mechanics and Rock Engineering, 2018, 51, 2669-2687.	2.6	103
74	Assessing the role of fractures on the permeability of the Permo-Triassic sandstones at the Soultz-sous-Forêts (France) geothermal site. Geothermics, 2018, 74, 181-189.	1.5	52
75	3D electrical conductivity tomography of volcanoes. Journal of Volcanology and Geothermal Research, 2018, 356, 243-263.	0.8	47
76	Detecting the Onset of Strain Localization Using Twoâ€Đimensional Wavelet Analysis on Sandstone Deformed at Different Effective Pressures. Journal of Geophysical Research: Solid Earth, 2018, 123, 10,460.	1.4	13
77	Estimating in situ rock mass strength and elastic modulus of granite from the Soultz-sous-Forúts geothermal reservoir (France). Geothermal Energy, 2018, 6, .	0.9	35
78	Characterizing the physical properties of rocks from the Paleozoic to Permo-Triassic transition in the Upper Rhine Graben. Geothermal Energy, 2018, 6, .	0.9	28
79	Coda wave interferometry during the heating of deep geothermal reservoir rocks. Geothermal Energy, 2018, 6, .	0.9	2
80	The influence of hydrothermal brine on the short-term strength and elastic modulus of sandstones from exploration well EPS-1 at Soultz-sous-Forêts (France). Geothermal Energy, 2018, 6, .	0.9	9
81	Influence of unloading and loading stress cycles on the creep behavior of Darley Dale Sandstone. International Journal of Rock Mechanics and Minings Sciences, 2018, 112, 55-63.	2.6	43
82	Thermal resilience of microcracked andesitic dome rocks. Journal of Volcanology and Geothermal Research, 2018, 367, 20-30.	0.8	21
83	Rock mass properties and edifice strength data from Pinnacle Ridge, Mt. Ruapehu, New Zealand. Journal of Volcanology and Geothermal Research, 2018, 367, 46-62.	0.8	14
84	Numerical Approach to Creep of Rock Based on the Numerical Manifold Method. International Journal of Geomechanics, 2018, 18, .	1.3	20
85	Rapid solid-state sintering in volcanic systems. American Mineralogist, 2018, 103, 2028-2031.	0.9	8
86	Physical and mechanical property relationships of a shallow intrusion and volcanic host rock, Pinnacle Ridge, Mt. Ruapehu, New Zealand. Journal of Volcanology and Geothermal Research, 2018, 359, 1-20.	0.8	44
87	The influence of water on the strength of Neapolitan Yellow Tuff, the most widely used building stone in Naples (Italy). Bulletin of Volcanology, 2018, 80, 1.	1.1	28
88	The permeability of stylolite-bearing limestone. Journal of Structural Geology, 2018, 116, 81-93.	1.0	34
89	Fire resistance of the Mt. Epomeo Green Tuff, a widely-used building stone on Ischia Island (Italy). Volcanica, 2018, 1, 33-48.	0.6	15
90	From rock to magma and back again: The evolution of temperature and deformation mechanism in conduit margin zones. Earth and Planetary Science Letters, 2017, 463, 92-100.	1.8	54

#	Article	IF	CITATIONS
91	Local geology controlled the feasibility of vitrifying Iron Age buildings. Scientific Reports, 2017, 7, 40028.	1.6	7
92	The influence of pore geometry and orientation on the strength and stiffness of porous rock. Journal of Structural Geology, 2017, 96, 149-160.	1.0	83
93	Hot climate inhibits volcanism on Venus: Constraints from rock deformation experiments and argon isotope geochemistry. Physics of the Earth and Planetary Interiors, 2017, 268, 18-34.	0.7	10
94	Time-dependent permeability evolution in compacting volcanic fracture systems and implications for gasÂoverpressure. Journal of Volcanology and Geothermal Research, 2017, 339, 81-97.	0.8	35
95	The Influence of Temperature on Time-Dependent Deformation and Failure in Granite: A Mesoscale Modeling Approach. Rock Mechanics and Rock Engineering, 2017, 50, 2345-2364.	2.6	73
96	The failure processes analysis of rock slope using numerical modelling techniques. Engineering Failure Analysis, 2017, 79, 999-1016.	1.8	41
97	Flank instability assessment at Kick-'em-Jenny submarine volcano (Grenada, Lesser Antilles): a multidisciplinary approach using experiments and modeling. Bulletin of Volcanology, 2017, 79, 1.	1.1	13
98	A multidisciplinary approach to quantify the permeability of the Whakaari/White Island volcanic hydrothermal system (Taupo Volcanic Zone, New Zealand). Journal of Volcanology and Geothermal Research, 2017, 332, 88-108.	0.8	92
99	Porosity evolution at the brittle-ductile transition in the continental crust: Implications for deep hydro-geothermal circulation. Scientific Reports, 2017, 7, 7705.	1.6	60
100	Multiphysics Laboratory Tests for Modelling Gravity-driven Instabilities at Slope Scale. Procedia Engineering, 2017, 191, 142-149.	1.2	7
101	Gravitational slope-deformation of a resurgent caldera: New insights from the mechanical behaviour of Mt. Nuovo tuffs (Ischia Island, Italy). Journal of Volcanology and Geothermal Research, 2017, 345, 1-20.	0.8	22
102	Does an inter-flaw length control the accuracy of rupture forecasting in geological materials?. Earth and Planetary Science Letters, 2017, 475, 181-189.	1.8	39
103	Inelastic Compaction in Highâ€Porosity Limestone Monitored Using Acoustic Emissions. Journal of Geophysical Research: Solid Earth, 2017, 122, 9989.	1.4	35
104	Riding the Right Wavelet: Quantifying Scale Transitions in Fractured Rocks. Geophysical Research Letters, 2017, 44, 11,808.	1.5	7
105	Quantification of microcrack characteristics and implications for stiffness and strength of granite. International Journal of Rock Mechanics and Minings Sciences, 2017, 100, 138-150.	2.6	147
106	The Brittle-Ductile Transition in Porous Limestone Imaged by X-Ray Computed Tomography and Digital Image Correlation. , 2017, , .		2
107	Low surface gravitational acceleration of Mars results in a thick and weak lithosphere: Implications for topography, volcanism, and hydrology. Icarus, 2017, 281, 103-114.	1.1	13
108	Microstructural and petrophysical properties of the Permo-Triassic sandstones (Buntsandstein) from the Soultz-sous-Forêts geothermal site (France). Geothermal Energy, 2017, 5, .	0.9	56

#	Article	IF	CITATIONS
109	Inelastic compaction and permeability evolution in volcanic rock. Solid Earth, 2017, 8, 561-581.	1.2	40
110	Geothermal implications for fracture-filling hydrothermal precipitation. Geothermics, 2016, 64, 235-245.	1.5	58
111	Mechanical behaviour of dacite from Mount St. Helens (USA): A link between porosity and lava dome extrusion mechanism (dome or spine)?. Journal of Volcanology and Geothermal Research, 2016, 328, 159-177.	0.8	41
112	Closing an open system: Pore pressure changes in permeable edifice rock at high strain rates. Journal of Volcanology and Geothermal Research, 2016, 315, 40-50.	0.8	31
113	The strength of heterogeneous volcanic rocks: A 2D approximation. Journal of Volcanology and Geothermal Research, 2016, 319, 1-11.	0.8	31
114	Exploring the scale-dependent permeability of fractured andesite. Earth and Planetary Science Letters, 2016, 447, 139-150.	1.8	152
115	Evidence for the development of permeability anisotropy in lava domes and volcanic conduits. Journal of Volcanology and Geothermal Research, 2016, 323, 163-185.	0.8	69
116	Strainâ€induced permeability increase in volcanic rock. Geophysical Research Letters, 2016, 43, 11,603.	1.5	35
117	Mechanical behaviour of the Rotokawa Andesites (New Zealand): Insight into permeability evolution and stress-induced behaviour in an actively utilised geothermal reservoir. Geothermics, 2016, 64, 163-179.	1.5	55
118	Impact of stylolites on the mechanical strength of limestone. Tectonophysics, 2016, 690, 4-20.	0.9	55
119	Friendly fire: Engineering a fort wall in the Iron Age. Journal of Archaeological Science, 2016, 67, 7-13.	1.2	9
120	Pore pressure embrittlement in a volcanic edifice. Bulletin of Volcanology, 2016, 78, 1.	1.1	35
121	Probing permeability and microstructure: Unravelling the role of a low-permeability dome on the explosivity of Merapi (Indonesia). Journal of Volcanology and Geothermal Research, 2016, 316, 56-71.	0.8	69
122	Timescales for permeability reduction and strength recovery in densifying magma. Earth and Planetary Science Letters, 2015, 429, 223-233.	1.8	61
123	Timeâ€dependent compaction band formation in sandstone. Journal of Geophysical Research: Solid Earth, 2015, 120, 4808-4830.	1.4	73
124	Variability in composition and physical properties of the sedimentary basement of Mt Etna, Italy. Journal of Volcanology and Geothermal Research, 2015, 302, 102-116.	0.8	11
125	Fracture and compaction of andesite in a volcanic edifice. Bulletin of Volcanology, 2015, 77, 55.	1.1	87
126	Mechanical behaviour and failure modes in the Whakaari (White Island volcano) hydrothermal system, New Zealand. Journal of Volcanology and Geothermal Research, 2015, 295, 26-42.	0.8	101

#	Article	IF	CITATIONS
127	Fracture of magma containing overpressurised pores. Journal of Volcanology and Geothermal Research, 2015, 301, 180-190.	0.8	18
128	Experimental constraints on phreatic eruption processes at Whakaari (White Island volcano). Journal of Volcanology and Geothermal Research, 2015, 302, 150-162.	0.8	47
129	Permeability and porosity relationships of edifice-forming andesites: A combined field and laboratory study. Journal of Volcanology and Geothermal Research, 2015, 297, 52-68.	0.8	146
130	Time Dependent Compaction and Strain Localisation in Porous Sandstone - Implications for Reservoir Compaction. , 2015, , .		0
131	The permeability and elastic moduli of tuff from Campi Flegrei, Italy: implications for ground deformation modelling. Solid Earth, 2014, 5, 25-44.	1.2	83
132	Rate―and strainâ€dependent brittle deformation of rocks. Journal of Geophysical Research: Solid Earth, 2014, 119, 1818-1836.	1.4	104
133	Conditions and timescales for welding block-and-ash flow deposits. Journal of Volcanology and Geothermal Research, 2014, 289, 202-209.	0.8	36
134	Stylolites in limestones: Barriers to fluid flow?. Geology, 2014, 42, 51-54.	2.0	88
135	Physical property relationships of the Rotokawa Andesite, a significant geothermal reservoir rock in the Taupo Volcanic Zone, New Zealand. Geothermal Energy, 2014, 2, .	0.9	66
136	The influence of porosity and vesicle size on the brittle strength of volcanic rocks and magma. Bulletin of Volcanology, 2014, 76, 1.	1.1	82
137	Mechanisms of timeâ€dependent deformation in porous limestone. Journal of Geophysical Research: Solid Earth, 2014, 119, 5444-5463.	1.4	91
138	Microstructural controls on the physical and mechanical properties of edificeâ€forming andesites at Volcán de Colima, Mexico. Journal of Geophysical Research: Solid Earth, 2014, 119, 2925-2963.	1.4	155
139	Thermal weakening of the carbonate basement under Mt. Etna volcano (Italy): Implications for volcano instability. Journal of Volcanology and Geothermal Research, 2013, 250, 42-60.	0.8	81
140	Tracking the permeable porous network during strain-dependent magmatic flow. Journal of Volcanology and Geothermal Research, 2013, 260, 117-126.	0.8	74
141	Time-dependent cracking and brittle creep in crustal rocks: A review. Journal of Structural Geology, 2013, 52, 17-43.	1.0	500
142	The influence of thermal-stressing (up to 1000°C) on the physical, mechanical, and chemical properties of siliceous-aggregate, high-strength concrete. Construction and Building Materials, 2013, 42, 248-265.	3.2	114
143	Mechanics of Time-Dependent Deformation in Crustal Rocks. , 2013, , .		4
144	Decarbonation and thermal microcracking under magmaticP-T-f CO2 conditions: the role of skarn substrata in promoting volcanic instability. Geophysical Journal International, 2013, 195, 369-380.	1.0	21

#	Article	IF	CITATIONS
145	Reconstructing magma failure and the degassing network of dome-building eruptions. Geology, 2013, 41, 515-518.	2.0	106
146	Strength and permeability recovery of tuffisite-bearing andesite. Solid Earth, 2012, 3, 191-198.	1.2	62
147	Laboratory simulations of tensile fracture development in a volcanic conduit via cyclic magma pressurisation. Earth and Planetary Science Letters, 2012, 349-350, 231-239.	1.8	26
148	Volcanic edifice weakening via decarbonation: A selfâ€limiting process?. Geophysical Research Letters, 2012, 39, .	1.5	24
149	Micromechanics of brittle creep in rocks. Journal of Geophysical Research, 2012, 117, .	3.3	131
150	How tough is tuff in the event of fire?. Geology, 2012, 40, 311-314.	2.0	58
151	Modelling the time-dependent rheological behaviour of heterogeneous brittle rocks. Geophysical Journal International, 2012, 189, 1781-1796.	1.0	92
152	Experimental generation of volcanic pseudotachylytes: Constraining rheology. Journal of Structural Geology, 2012, 38, 222-233.	1.0	46
153	Volcanic conduit failure as a trigger to magma fragmentation. Bulletin of Volcanology, 2012, 74, 11-13.	1.1	17
154	Increase in radon emission due to rock failure: An experimental study. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	53
155	Forecasting volcanic eruptions and other material failure phenomena: An evaluation of the failure forecast method. Geophysical Research Letters, 2011, 38, .	1.5	77
156	Brittle creep in basalt and its application to time-dependent volcano deformation. Earth and Planetary Science Letters, 2011, 307, 71-82.	1.8	206
157	Challenges for forecasting based on accelerating rates of earthquakes at volcanoes and laboratory analogues. Geophysical Journal International, 2011, 185, 718-723.	1.0	63
158	Volcanic edifice weakening via devolatilization reactions. Geophysical Journal International, 2011, 186, 1073-1077.	1.0	43
159	Elastic moduli evolution and accompanying stress changes with increasing crack damage: implications for stress changes around fault zones and volcanoes during deformation. Geophysical Journal International, 2010, 183, 225-236.	1.0	139
160	Experimental investigation of the mechanical properties of synthetic magnesium sulfate hydrates: Implications for the strength of hydrated deposits on Mars. Journal of Geophysical Research, 2010, 115,	3.3	25
161	The evolution of elastic moduli with increasing crack damage during cyclic stressing of a basalt from Mt. Etna volcano. Tectonophysics, 2009, 471, 153-160.	0.9	201
162	Influence of temperature on brittle creep in sandstones. Geophysical Research Letters, 2009, 36, .	1.5	140

#	Article	IF	CITATIONS
163	Timeâ€dependent brittle creep in Darley Dale sandstone. Journal of Geophysical Research, 2009, 114, .	3.3	288
164	Understanding Slow Deformation Before Dynamic Failure. , 2009, , 229-247.		3
165	Quantifying the evolution of static elastic properties as crystalline rock approaches failure. International Journal of Rock Mechanics and Minings Sciences, 2008, 45, 564-573.	2.6	142
166	Slip on 'weak' faults by the rotation of regional stress in the fracture damage zone. Nature, 2006, 444, 922-925.	13.7	369