Richard J Bomphrey

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/4668651/publications.pdf
Version: 2024-02-01

Stability and manoeuvrability in animal movement: lessons from biology, modelling and robotics.
Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212492 .

Virtual manipulation of tail postures of a gliding barn owl (<i>Tyto alba) demonstrates drag minimization when gliding. Journal of the Royal Society Interface, 2022, 19, 20210710.

Systematic characterization of wing mechanosensors that monitor airflow and wing deformations.
IScience, 2022, 25, 104150.

Raptor wing morphing with flight speed. Journal of the Royal Society Interface, 2021, 18, 20210349.
1.5

Bird wings act as a suspension system that rejects gusts. Proceedings of the Royal Society B:
Biological Sciences, 2020, 287, 20201748.

Aerodynamic imaging by mosquitoes inspires a surface detector for autonomous flying vehicles.
Science, 2020, 368, 634-637.

Recent progress on the flight of dragonflies and damselflies. International Journal of Odonatology,
2020, 23, 41-49.

High aerodynamic lift from the tail reduces drag in gliding raptors. Journal of Experimental Biology,
2020, 223, .
$0.8 \quad 34$

Insect and insect-inspired aerodynamics: unsteadiness, structural mechanics and flight control.
$9 \quad$ Current Opinion in Insect Science, 2018, 30, 26-32.

Petiolate wings: effects on the leading-edge vortex in flapping flight. Interface Focus, 2017, 7,
20160084.

Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight. Nature, 2017,
544, 92-95.

Flight of the dragonflies and damselflies. Philosophical Transactions of the Royal Society B:
Biological Sciences, 2016, 371, 20150389.

13 Morphomechanical Innovation Drives Explosive Seed Dispersal. Cell, 2016, 166, 222-233.
13.5

128

14 Leading Edge Vortex Evolution and Lift Production on Rotating Wings (Invited). , 2016, , .

15 Low Reynolds Number Acceleration of Flat Plate Wings at High Incidence (Invited). , 2016, , .
13

Enhanced flight performance by genetic manipulation of wing shape in Drosophila. Nature Communications, 2016, 7, 10851.

A CFD-informed quasi-steady model of flapping-wing aerodynamics. Journal of Fluid Mechanics, 2015,
783, 323-343.
1.4

70
19 The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing. Bioinspiration
and Biomimetics, 2015, 10, 056020 .
W053001 Bio-inspiration from Nature's fliers. The Proceedings of Mechanical Engineering Congress
Japan, 2014, 2014, _W053001-1__W053001-4.

22 See-saw rocking: an <i>in vitro</i> model for mechanotransduction research. Journal of the Royal

$23 \quad$| Vision-based flight control in the hawkmoth <i> Hyles lineata</i>. Journal of the Royal Society |
| :--- |
| Interface, 2014, 11, 20130921. |

24 Iodine vapor staining for atomic number contrast in backscattered electron and Xâ€ \ddagger ay imaging.
Microscopy Research and Technique, 2014, 77, 1044-1051.
1.2

45

```
25 Wake Development behind Paired Wings with Tip and Root Trailing Vortices: Consequences for Animal
```

Flight Force Estimates. PLoS ONE, 2014, 9, e91040.
27 Time-varying span efficiency through the wingbeat of desert locusts. Journal of the Royal Society 27 Interface, 2012, 9, 1177-1186. 1.5 25
Tomographic particle image velocimetry of desert locust wakes: instantaneous volumes combine to 28 reveal hidden vortex elements and rapid wake deformation. Journal of the Royal Society Interface, 2012, 9, 3378-3386.
.5 33
29 Advances in Animal Flight Aerodynamics Through Flow Measurement. Evolutionary Biology, 2012, 39,
1-11.
0.5 26
Rhythmic actomyosin-driven contractions induced by sperm entry predict mammalian embryo viability.5.8107
$30 \quad$ Nature Communications, 2011, 2, 417.
Smoke visualization of free-flying bumblebees indicates independent leading-edge vortices on each
31 wing pair. , 2010, , 249-259.4The Typical Flight Performance of Blowflies: Measuring the Normal Performance Envelope of1.130Calliphora vicina Using a Novel Corner-Cube Arena. PLoS ONE, 2009, 4, e7852.1.191
wing pair. Experiments in Fluids, 2009, 46, 811-821.
Details of Insect Wing Design and Deformation Enhance Aerodynamic Function and Flight Efficiency.
Jumping robots: a biomimetic solution to locomotion across rough terrain. Bioinspiration and
Biomimetics, 2008, 3, 039801.1.55

37	Jumping robots: a biomimetic solution to locomotion across rough terrain. Bioinspiration and Biomimetics, 2007, 2, S65-S82.	1.5	167
38	Swimming performance of a subcarangiform, the blind Mexican cave fish (Astyanax fasciatus). Comparative Biochemistry and Physiology Part A, Molecular \& Integrative Physiology, 2007, 146, S119.	0.8	1
39	Insect Flight Dynamics and Control. , 2006,		21
40	Digital particle image velocimetry measurements of the downwash distribution of a desert locust Schistocerca gregaria. Journal of the Royal Society Interface, 2006, 3, 311-317.	1.5	37
41	Application of digital particle image velocimetry to insect aerodynamics: measurement of the leading-edge vortex and near wake of a Hawkmoth. Experiments in Fluids, 2006, 40, 546-554.	1.1	80
42	Insects in flight: direct visualization and flow measurements. Bioinspiration and Biomimetics, 2006, 1, S1-S9.	1.5	24
43	The aerodynamics of Manduca sexta: digital particle image velocimetry analysis of the leading-edge vortex. Journal of Experimental Biology, 2005, 208, 1079-1094.	0.8	158
44	Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. Journal of Experimental Biology, 2004, 207, 4299-4323.	0.8	276

