James Hamilton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4668475/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Formation of Highly Soluble Oligomers of α-Synuclein Is Regulated by Fatty Acids and Enhanced in Parkinson's Disease. Neuron, 2003, 37, 583-595.	8.1	522
2	Relationship of Obesity with Osteoporosis. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 1640-1646.	3.6	494
3	Correlation of Obesity and Osteoporosis: Effect of Fat Mass on the Determination of Osteoporosis. Journal of Bone and Mineral Research, 2008, 23, 17-29.	2.8	408
4	Fast/Glycolytic Muscle Fiber Growth Reduces Fat Mass and Improves Metabolic Parameters in Obese Mice. Cell Metabolism, 2008, 7, 159-172.	16.2	331
5	Location of High and Low Affinity Fatty Acid Binding Sites on Human Serum Albumin Revealed by NMR Drug-competition Analysis. Journal of Molecular Biology, 2006, 361, 336-351.	4.2	301
6	pH gradients across phospholipid membranes caused by fast flip-flop of un-ionized fatty acids Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 11367-11370.	7.1	284
7	How are free fatty acids transported in membranes? Is it by proteins or by free diffusion through the lipids?. Diabetes, 1999, 48, 2255-2269.	0.6	279
8	In Vivo Molecular Imaging of Acute and Subacute Thrombosis Using a Fibrin-Binding Magnetic Resonance Imaging Contrast Agent. Circulation, 2004, 109, 2023-2029.	1.6	266
9	Locating high-affinity fatty acid-binding sites on albumin by x-ray crystallography and NMR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17958-17963.	7.1	236
10	Resolvin E1 (RvE1) Attenuates Atherosclerotic Plaque Formation in Diet and Inflammation-Induced Atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1123-1133.	2.4	171
11	Interactions of a very long chain fatty acid with model membranes and serum albumin. Implications for the pathogenesis of adrenoleukodystrophy Journal of Clinical Investigation, 1995, 96, 1455-1463.	8.2	166
12	Solubilization and localization of triolein in phosphatidylcholine bilayers: a 13C NMR study Proceedings of the National Academy of Sciences of the United States of America, 1981, 78, 6878-6882.	7.1	158
13	Locations of the three primary binding sites for long-chain fatty acids on bovine serum albumin Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 2051-2054.	7.1	154
14	Effects of dihydrotestosterone on differentiation and proliferation of human mesenchymal stem cells and preadipocytes. Molecular and Cellular Endocrinology, 2008, 296, 32-40.	3.2	138
15	A Model for Fatty Acid Transport into the Brain. Journal of Molecular Neuroscience, 2007, 33, 12-17.	2.3	135
16	Transfer of oleic acid between albumin and phospholipid vesicles Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 82-86.	7.1	125
17	Brain Uptake and Utilization of Fatty Acids, Lipids and Lipoproteins: Application to Neurological Disorders. Journal of Molecular Neuroscience, 2007, 33, 2-11.	2.3	110
18	Fatty Acid Transport: The Diffusion Mechanism in Model and Biological Membranes. Journal of Molecular Neuroscience, 2001, 16, 99-108.	2.3	109

JAMES HAMILTON

#	Article	IF	CITATIONS
19	Rapid Flip-flop of Oleic Acid across the Plasma Membrane of Adipocytes. Journal of Biological Chemistry, 2003, 278, 7988-7995.	3.4	107
20	A Solid-State NMR Study of Phospholipid-Cholesterol Interactions: Sphingomyelin-Cholesterol Binary Systems. Biophysical Journal, 2002, 83, 1465-1478.	0.5	105
21	Mediumâ€Chain Oil Reduces Fat Mass and Downâ€regulates Expression of Adipogenic Genes in Rats. Obesity, 2003, 11, 734-744.	4.0	101
22	Genome-Wide Association Study Identifies ALDH7A1 as a Novel Susceptibility Gene for Osteoporosis. PLoS Genetics, 2010, 6, e1000806.	3.5	101
23	Interactions of very long-chain saturated fatty acids with serum albumin. Journal of Lipid Research, 2002, 43, 1000-1010.	4.2	99
24	The Ionization Behavior of Fatty Acids and Bile Acids in Micelles and Membranes. Hepatology, 1984, 4, 77S-79S.	7.3	90
25	Intracellular pH in adipocytes: effects of free fatty acid diffusion across the plasma membrane, lipolytic agonists, and insulin Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 10139-10144.	7.1	90
26	Flexibility is a likely determinant of binding specificity in the case of ileal lipid binding protein. Structure, 1996, 4, 785-800.	3.3	88
27	Interactions of myristic acid with bovine serum albumin: a 13C NMR study Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 3718-3722.	7.1	84
28	Porphyromonas gingivalis accelerates inflammatory atherosclerosis in the innominate artery of ApoE deficient mice. Atherosclerosis, 2011, 215, 52-59.	0.8	83
29	In Vivo Magnetic Resonance Imaging of Experimental Thrombosis in a Rabbit Model. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 1556-1560.	2.4	79
30	A robust rabbit model of human atherosclerosis and atherothrombosis. Journal of Lipid Research, 2009, 50, 787-797.	4.2	78
31	Binding of 13-HODE and 15-HETE to Phospholipid Bilayers, Albumin, and Intracellular Fatty Acid Binding Proteins. Journal of Biological Chemistry, 2001, 276, 15575-15580.	3.4	72
32	Targeted binding of PLA microparticles with lipid-PEG-tethered ligands. Biomaterials, 2007, 28, 4991-4999.	11.4	70
33	Eicosapentaenoic acid, but not oleic acid, stimulates β-oxidation in adipocytes. Lipids, 2005, 40, 815-821.	1.7	65
34	Solution structure of human intestinal fatty acid binding protein: implications for ligand entry and exit. Journal of Biomolecular NMR, 1997, 9, 213-228.	2.8	58
35	In vivo Detection of Vulnerable Atherosclerotic Plaque by MRI in a Rabbit Model. Circulation: Cardiovascular Imaging, 2010, 3, 323-332.	2.6	57
36	Angiotensin Receptor Blockade With Candesartan Attenuates Atherosclerosis, Plaque Disruption, and Macrophage Accumulation Within the Plaque in a Rabbit Model. Circulation, 2004, 110, 2060-2065.	1.6	55

James Hamilton

#	Article	IF	CITATIONS
37	Structural requirements for charged lipid molecules to directly increase or suppress K+ channel activity in smooth muscle cells. Effects of fatty acids, lysophosphatidate, acyl coenzyme A and sphingosine Journal of General Physiology, 1994, 103, 471-486.	1.9	54
38	Protective Role for TLR4 Signaling in Atherosclerosis Progression as Revealed by Infection with a Common Oral Pathogen. Journal of Immunology, 2012, 189, 3681-3688.	0.8	54
39	Glucagon-Like Peptide 1 Stimulates Lipolysis in Clonal Pancreatic Â-Cells (HIT). Diabetes, 2001, 50, 56-62.	0.6	53
40	Interactions between fatty acids and $\hat{l}\pm$ -synuclein. Journal of Lipid Research, 2006, 47, 1714-1724.	4.2	51
41	Genetic Disruption of Myostatin Reduces the Development of Proatherogenic Dyslipidemia and Atherogenic Lesions In <i>Ldlr</i> Null Mice. Diabetes, 2009, 58, 1739-1748.	0.6	51
42	13C MAS NMR studies of crystalline cholesterol and lipid mixtures modeling atherosclerotic plaques. Biophysical Journal, 1996, 71, 2857-2868.	0.5	49
43	Solution Structure and Backbone Dynamics of Human Liver Fatty Acid Binding Protein: Fatty Acid Binding Revisited. Biophysical Journal, 2012, 102, 2585-2594.	0.5	49
44	Solution structure of ileal lipid binding protein in complex with glycocholate. FEBS Journal, 2000, 267, 2929-2938.	0.2	48
45	Mitochondrial uncouplers induce proton leak by activating AAC and UCP1. Nature, 2022, 606, 180-187.	27.8	48
46	Interactions of acyl carnitines with model membranes. Journal of Lipid Research, 2002, 43, 1429-1439.	4.2	46
47	Quantification In Situ of Crystalline Cholesterol and Calcium Phosphate Hydroxyapatite in Human Atherosclerotic Plaques by Solid-State Magic Angle Spinning NMR. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 1630-1636.	2.4	44
48	Medium-chain fatty acid binding to albumin and transfer to phospholipid bilayers Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 2663-2667.	7.1	40
49	Identification of Atherosclerotic Lipid Deposits by Diffusion-Weighted Imaging. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1440-1446.	2.4	40
50	Regions of Low Endothelial Shear Stress Colocalize With Positive Vascular Remodeling and Atherosclerotic Plaque Disruption. Circulation: Cardiovascular Imaging, 2013, 6, 302-310.	2.6	38
51	Energy translocation across cell membranes and membrane models. Acta Physiologica Scandinavica, 2003, 178, 357-365.	2.2	37
52	MRI of Atherothrombosis Associated With Plaque Rupture. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 240-245.	2.4	37
53	Effect of disease progression on liver apparent diffusion coefficient values in a murine model of NASH at 11.7 tesla MRI. Journal of Magnetic Resonance Imaging, 2011, 33, 882-888.	3.4	33
54	Natural Abundance Carbon-13 Nuclear Magnetic Resonance Spectra of Human Serum Lipoproteins. Science, 1973, 180, 193-195.	12.6	31

James Hamilton

#	Article	IF	CITATIONS
55	Effect of disease progression on liver apparent diffusion coefficient and T ₂ values in a murine model of hepatic fibrosis at 11.7 Tesla MRI. Journal of Magnetic Resonance Imaging, 2012, 35, 140-146.	3.4	31
56	Simultaneous Longitudinal Strain in All 4 Cardiac Chambers. Circulation: Cardiovascular Imaging, 2016, 9, e003895.	2.6	28
57	Identification of cholesteryl esters in human carotid atherosclerosis by ex vivo image-guided proton MRS. Journal of Lipid Research, 2006, 47, 310-317.	4.2	27
58	Oleate-induced formation of fat cells with impaired insulin sensivitity. Lipids, 2006, 41, 267-271.	1.7	26
59	Quantification of Cholesteryl Esters in Human and Rabbit Atherosclerotic Plaques by Magic-Angle Spinning13C-NMR. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 2682-2688.	2.4	25
60	High-field 13C NMR Studies of certain normal and abnormal human plasma lipoproteins. Science, 1976, 194, 1424-1427.	12.6	24
61	Mediumâ€Chain Fatty Acids Attenuate Agonistâ€Stimulated Lipolysis, Mimicking the Effects of Starvation. Obesity, 2004, 12, 599-611.	4.0	24
62	Caveolins sequester FA on the cytoplasmic leaflet of the plasma membrane, augment triglyceride formation, and protect cells from lipotoxicity. Journal of Lipid Research, 2010, 51, 914-922.	4.2	23
63	Sulfonylureas Rapidly Cross Phospholipid Bilayer Membranes by a Free-Diffusion Mechanism. Diabetes, 2003, 52, 2526-2531.	0.6	22
64	Fast Diffusion of Very Long Chain Saturated Fatty Acids across a Bilayer Membrane and Their Rapid Extraction by Cyclodextrins. Journal of Biological Chemistry, 2009, 284, 33296-33304.	3.4	22
65	Measuring the Adsorption of Fatty Acids to Phospholipid Vesicles by Multiple Fluorescence Probes. Biophysical Journal, 2008, 94, 4493-4503.	0.5	19
66	Energy Metabolism and Mitochondrial Superoxide Anion Production in Pre-symptomatic Striatal Neurons Derived from Human-Induced Pluripotent Stem Cells Expressing Mutant Huntingtin. Molecular Neurobiology, 2020, 57, 668-684.	4.0	18
67	Early-Life Sodium Exposure Unmasks Susceptibility to Stroke in Hyperlipidemic, Hypertensive Heterozygous Tg25 Rats Transgenic for Human Cholesteryl Ester Transfer Protein. Circulation, 2009, 119, 1501-1509.	1.6	17
68	Healthy obese persons. Current Opinion in Endocrinology, Diabetes and Obesity, 2013, 20, 369-376.	2.3	17
69	Brain Uptake and Utilization of Fatty Acids, Lipids & Lipoproteins: Recommendations for Future Research. Journal of Molecular Neuroscience, 2007, 33, 146-150.	2.3	15
70	Healing of an Asymptomatic Carotid Plaque Ulceration. Circulation, 2008, 118, e147-8.	1.6	15
71	Identification of different lipid phases and calcium phosphate deposits in human carotid artery plaques by MAS NMR spectroscopy. Magnetic Resonance in Medicine, 1998, 39, 184-189.	3.0	13
72	Crystal structure of CETP: new hopes for raising HDL to decrease risk of cardiovascular disease?. Nature Structural and Molecular Biology, 2007, 14, 95-97.	8.2	13

JAMES HAMILTON

#	Article	IF	CITATIONS
73	Early inÂvivo discrimination of vulnerable atherosclerotic plaques that disrupt: A serial MRI study. Atherosclerosis, 2016, 244, 101-107.	0.8	13
74	Effects of Acetaldehyde on Hepatocyte Glycerol Uptake and Cell Size: Implication of Aquaporin 9. Alcoholism: Clinical and Experimental Research, 2011, 35, 939-945.	2.4	12
75	MRI of atherosclerosis and fatty liver disease in cholesterol fed rabbits. Journal of Translational Medicine, 2018, 16, 215.	4.4	12
76	Molecular organization and motions of crystalline monoacylglycerols and diacylglycerols: a C-13 MASNMR study. Biophysical Journal, 1995, 68, 1383-1395.	0.5	10
77	Incorporation of [1-13C]oleate into cellular triglycerides in differentiating 3T3L1 cells. Lipids, 1999, 34, 825-831.	1.7	9
78	Acipimox, an Inhibitor of Lipolysis, Attenuates Atherogenesis in LDLR-Null Mice Treated With HIV Protease Inhibitor Ritonavir. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 2028-2032.	2.4	9
79	Phase behavior and crystalline structures of cholesteryl ester mixtures: a C-13 MASNMR study. Biophysical Journal, 1995, 68, 2376-2386.	0.5	8
80	Study of the miscibility of cholesteryl oleate in a matrix of ceramide, cholesterol and fatty acid. Chemistry and Physics of Lipids, 2011, 164, 664-671.	3.2	8
81	A 13C nuclear magnetic resonance study of free fatty acid incorporation in acylated lipids in differentiating predipocytes. Lipids, 1998, 33, 449-454.	1.7	5
82	Conformation and inhibitory properties of peptides based on the tissue kallikreinâ€aprotinin complex. International Journal of Peptide and Protein Research, 1991, 37, 536-543.	0.1	5
83	Length, weight and secondary sex character development in male and female phenotypes in three sex chromosomal genotypes (XX, XY, YY) in the killifish,Oryzias latipes. The Journal of Experimental Zoology, 1974, 189, 227-233.	1.4	3
84	NMR assignment and structural characterization of the fatty acid binding protein from the flight muscle of Locusta migratoria. Journal of Biomolecular NMR, 2003, 25, 355-356.	2.8	2
85	High Fat Diet versus Disturbed Blood Flow Conditions: Implications for Endothelial Glycocalyx Integrity and Preâ€Atherosclerotic Inflammation. FASEB Journal, 2020, 34, 1-1.	0.5	2
86	Roundtable Discussion of Session 1: Mechanisms of Lipid Uptake and Transport in the Brain. Journal of Molecular Neuroscience, 2007, 33, 45-50.	2.3	1
87	Roundtable Discussion of Session 2: Lipoproteins and Polyunsaturated Fatty Acids. Journal of Molecular Neuroscience, 2007, 33, 74-79.	2.3	1
88	Application of MRI to detect high-risk atherosclerotic plaque. Expert Review of Cardiovascular Therapy, 2011, 9, 545-550.	1.5	1
89	Fatty acid binding to CD36 affects oxLDL uptake. FASEB Journal, 2015, 29, 566.8.	0.5	1
90	Roundtable Discussion of Session 3: Eicosanoids in Brain Function. Journal of Molecular Neuroscience, 2007, 33, 100-104.	2.3	0

JAMES HAMILTON

#	Article	IF	CITATIONS
91	Roundtable Discussion of Session 4: Fatty Acids and Lipids in Brain Disorders. Journal of Molecular Neuroscience, 2007, 33, 120-124.	2.3	0
92	Reply. Hepatology, 2016, 64, 1371-1372.	7.3	0
93	Reply. Hepatology, 2017, 65, 755-755.	7.3	0
94	Understanding the role of pancreatic β ell CD36 in the development of Type 2 Diabetes. FASEB Journal, 2018, 32, .	0.5	0
95	A Qualitative Comparison of Manual and Kâ€means Segmentation for Wholeâ€slide Histology Images of Rabbit Vocal Folds. FASEB Journal, 2022, 36, .	0.5	0