Jesper V. Olsen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4668377/jesper-v-olsen-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

38,043 83 194 227 h-index g-index citations papers 11.8 44,264 7.17 247 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
227	A deeper look at carrier proteome effects for single-cell proteomics <i>Communications Biology</i> , 2022 , 5, 150	6.7	2
226	Phosphorylation of SHP2 at Tyr62 enables acquired resistance to SHP2 allosteric inhibitors in FLT3-ITD-driven AML <i>Cancer Research</i> , 2022 ,	10.1	2
225	SPIN enables high throughput species identification of archaeological bone by proteomics <i>Nature Communications</i> , 2022 , 13, 2458	17.4	1
224	A Middle Pleistocene Denisovan molar from the Annamite Chain of northern Laos <i>Nature Communications</i> , 2022 , 13, 2557	17.4	3
223	Human METTL18 is a histidine-specific methyltransferase that targets RPL3 and affects ribosome biogenesis and function. <i>Nucleic Acids Research</i> , 2021 , 49, 3185-3203	20.1	12
222	Proteomic investigation of Cbl and Cbl-b in neuroblastoma cell differentiation highlights roles for SHP-2 and CDK16. <i>IScience</i> , 2021 , 24, 102321	6.1	3
221	Faecal proteomics as a novel method to study mammalian behaviour and physiology. <i>Molecular Ecology Resources</i> , 2021 , 21, 1808-1819	8.4	1
220	Quantitative proteome comparison of human hearts with those of model organisms. <i>PLoS Biology</i> , 2021 , 19, e3001144	9.7	7
219	Proteomics of resistance to Notch1 inhibition in acute lymphoblastic leukemia reveals targetable kinase signatures. <i>Nature Communications</i> , 2021 , 12, 2507	17.4	6
218	GHB analogs confer neuroprotection through specific interaction with the CaMKIII domain. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	8
217	FRMD6 has tumor suppressor functions in prostate cancer. <i>Oncogene</i> , 2021 , 40, 763-776	9.2	11
216	Data Processing and Analysis for DIA-Based Phosphoproteomics Using Spectronaut. <i>Methods in Molecular Biology</i> , 2021 , 2361, 95-107	1.4	1
215	Human DDK rescues stalled forks and counteracts checkpoint inhibition at unfired origins to complete DNA replication. <i>Molecular Cell</i> , 2021 , 81, 426-441.e8	17.6	7
214	The methyltransferase METTL9 mediates pervasive 1-methylhistidine modification in mammalian proteomes. <i>Nature Communications</i> , 2021 , 12, 891	17.4	17
213	Causal integration of multi-omics data with prior knowledge to generate mechanistic hypotheses. <i>Molecular Systems Biology</i> , 2021 , 17, e9730	12.2	20
212	Spatial-proteomics reveals phospho-signaling dynamics at subcellular resolution. <i>Nature Communications</i> , 2021 , 12, 7113	17.4	5
211	The biomolecular characterization of a finger ring contextually dated to the emergence of the Early Neolithic from Syltholm, Denmark. <i>Royal Society Open Science</i> , 2020 , 7, 191172	3.3	3

(2019-2020)

210	Quantitative phosphoproteomics to unravel the cellular response to chemical stressors with different modes of action. <i>Archives of Toxicology</i> , 2020 , 94, 1655-1671	5.8	4
209	Proteome and Phosphoproteome Changes Associated with Prognosis in Acute Myeloid Leukemia. <i>Cancers</i> , 2020 , 12,	6.6	12
208	The dental proteome of Homo antecessor. <i>Nature</i> , 2020 , 580, 235-238	50.4	47
207	Rapid and site-specific deep phosphoproteome profiling by data-independent acquisition without the need for spectral libraries. <i>Nature Communications</i> , 2020 , 11, 787	17.4	108
206	Deciphering the human phosphoproteome. <i>Nature Biotechnology</i> , 2020 , 38, 285-286	44.5	3
205	A Compact Quadrupole-Orbitrap Mass Spectrometer with FAIMS Interface Improves Proteome Coverage in Short LC Gradients. <i>Molecular and Cellular Proteomics</i> , 2020 , 19, 716-729	7.6	112
204	Quantitative proteomics characterization of acutely isolated primary adult rat cardiomyocytes and fibroblasts. <i>Journal of Molecular and Cellular Cardiology</i> , 2020 , 143, 63-70	5.8	4
203	The human methyltransferase ZCCHC4 catalyses N6-methyladenosine modification of 28S ribosomal RNA. <i>Nucleic Acids Research</i> , 2020 , 48, 830-846	20.1	38
202	ProAlanase is an Effective Alternative to Trypsin for Proteomics Applications and Disulfide Bond Mapping. <i>Molecular and Cellular Proteomics</i> , 2020 , 19, 2139-2157	7.6	7
201	Multi-protease analysis of Pleistocene bone proteomes. <i>Journal of Proteomics</i> , 2020 , 228, 103889	3.9	3
200	Effects of active farnesoid X receptor on GLUTag enteroendocrine L cells. <i>Molecular and Cellular Endocrinology</i> , 2020 , 517, 110923	4.4	3
199	Mass-Spectrometry Based Proteome Comparison of Extracellular Vesicle Isolation Methods: Comparison of ME-kit, Size-Exclusion Chromatography, and High-Speed Centrifugation. <i>Biomedicines</i> , 2020 , 8,	4.8	14
198	Multi-omic detection of in archaeological human dental calculus. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2020 , 375, 20190584	5.8	13
197	ZAKIRecognizes Stalled Ribosomes through Partially Redundant Sensor Domains. <i>Molecular Cell</i> , 2020 , 78, 700-713.e7	17.6	19
196	Quantitative Proteomics of Human Heart Samples Collected Reveal the Remodeled Protein Landscape of Dilated Left Atrium Without Atrial Fibrillation. <i>Molecular and Cellular Proteomics</i> , 2020 , 19, 1132-1144	7.6	11
195	Molecular Basis of the Mechanisms Controlling MASTL. <i>Molecular and Cellular Proteomics</i> , 2020 , 19, 320	6- 3 :463	2
194	Palaeoproteomic identification of breast milk protein residues from the archaeological skeletal remains of a neonatal dog. <i>Scientific Reports</i> , 2019 , 9, 12841	4.9	7
193	Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny. <i>Nature</i> , 2019 , 574, 103-107	50.4	70

192	Oncogenic Mutations Rewire Signaling Pathways by Switching Protein Recruitment to Phosphotyrosine Sites. <i>Cell</i> , 2019 , 179, 543-560.e26	56.2	31
191	The Role of TTP Phosphorylation in the Regulation of Inflammatory Cytokine Production by MK2/3. Journal of Immunology, 2019 , 203, 2291-2300	5.3	16
190	Alternative Translation Initiation Generates a Functionally Distinct Isoform of the Stress-Activated Protein Kinase MK2. <i>Cell Reports</i> , 2019 , 27, 2859-2870.e6	10.6	5
189	Palaeoproteomics resolves sloth relationships. <i>Nature Ecology and Evolution</i> , 2019 , 3, 1121-1130	12.3	47
188	Proteomic characterization of chromosomal common fragile site (CFS)-associated proteins uncovers ATRX as a regulator of CFS stability. <i>Nucleic Acids Research</i> , 2019 , 47, 8004-8018	20.1	11
187	Protein Aggregation Capture on Microparticles Enables Multipurpose Proteomics Sample Preparation. <i>Molecular and Cellular Proteomics</i> , 2019 , 18, 1027-1035	7.6	70
186	GIGYF1/2-Driven Cooperation between ZNF598 and TTP in Posttranscriptional Regulation of Inflammatory Signaling. <i>Cell Reports</i> , 2019 , 26, 3511-3521.e4	10.6	24
185	Expression and secretion of a lytic polysaccharide monooxygenase by a fast-growing cyanobacterium. <i>Biotechnology for Biofuels</i> , 2019 , 12, 74	7.8	12
184	Quantitative proteomics and single-nucleus transcriptomics of the sinus node elucidates the foundation of cardiac pacemaking. <i>Nature Communications</i> , 2019 , 10, 2889	17.4	51
183	Dynamic lineage priming is driven via direct enhancer regulation by ERK. <i>Nature</i> , 2019 , 575, 355-360	50.4	29
182	Enamel proteome shows that Gigantopithecus was an early diverging pongine. <i>Nature</i> , 2019 , 576, 262-2	2 65 5.4	41
181	Proteogenomic Characterization of Patient-Derived Xenografts Highlights the Role of REST in Neuroendocrine Differentiation of Castration-Resistant Prostate Cancer. <i>Clinical Cancer Research</i> , 2019 , 25, 595-608	12.9	29
180	Large-Scale Phosphoproteomics Reveals Shp-2 Phosphatase-Dependent Regulators of Pdgf Receptor Signaling. <i>Cell Reports</i> , 2018 , 22, 2784-2796	10.6	34
179	Palaeoproteomic Profiling of Conservation Layers on a 14th Century Italian Wall Painting. <i>Angewandte Chemie</i> , 2018 , 130, 7491-7496	3.6	1
178	Palaeoproteomic Profiling of Conservation Layers on a 14th Century Italian Wall Painting. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 7369-7374	16.4	41
177	Truncated SALL1 Impedes Primary Cilia Function in Townes-Brocks Syndrome. <i>American Journal of Human Genetics</i> , 2018 , 102, 249-265	11	16
176	Control of endothelial cell tube formation by Notch ligand intracellular domain interactions with activator protein 1 (AP-1). <i>Journal of Biological Chemistry</i> , 2018 , 293, 1229-1242	5.4	6
175	Benchmarking common quantification strategies for large-scale phosphoproteomics. <i>Nature Communications</i> , 2018 , 9, 1045	17.4	146

(2017-2018)

174	A Novel LC System Embeds Analytes in Pre-formed Gradients for Rapid, Ultra-robust Proteomics. <i>Molecular and Cellular Proteomics</i> , 2018 , 17, 2284-2296	7.6	133
173	The dual methyltransferase METTL13 targets N terminus and Lys55 of eEF1A and modulates codon-specific translation rates. <i>Nature Communications</i> , 2018 , 9, 3411	17.4	40
172	SPOP promotes transcriptional expression of DNA repair and replication factors to prevent replication stress and genomic instability. <i>Nucleic Acids Research</i> , 2018 , 46, 9484-9495	20.1	24
171	Generic Workflow for Mapping of Complex Disulfide Bonds Using In-Source Reduction and Extracted Ion Chromatograms from Data-Dependent Mass Spectrometry. <i>Analytical Chemistry</i> , 2018 , 90, 8202-8210	7.8	13
170	Performance Evaluation of the Q Exactive HF-X for Shotgun Proteomics. <i>Journal of Proteome Research</i> , 2018 , 17, 727-738	5.6	160
169	Quantitative metaproteomics of medieval dental calculus reveals individual oral health status. Nature Communications, 2018, 9, 4744	17.4	36
168	Integrated proximal proteomics reveals IRS2 as a determinant of cell survival in ALK-driven neuroblastoma. <i>Science Signaling</i> , 2018 , 11,	8.8	15
167	Ancient proteins from ceramic vessels at <code>BtalhyR</code> West reveal the hidden cuisine of early farmers. <i>Nature Communications</i> , 2018 , 9, 4064	17.4	64
166	Limits for Resolving Isobaric Tandem Mass Tag Reporter Ions Using Phase-Constrained Spectrum Deconvolution. <i>Journal of Proteome Research</i> , 2018 , 17, 4008-4016	5.6	17
165	UbiSite approach for comprehensive mapping of lysine and N-terminal ubiquitination sites. <i>Nature Structural and Molecular Biology</i> , 2018 , 25, 631-640	17.6	178
164	PKD Phosphorylation as Novel Pathway of KV11.1 Regulation. <i>Cellular Physiology and Biochemistry</i> , 2018 , 47, 1742-1750	3.9	2
163	Molecular basis of Tousled-Like Kinase 2 activation. <i>Nature Communications</i> , 2018 , 9, 2535	17.4	14
162	A comprehensive platform for the analysis of ubiquitin-like protein modifications using in vivo biotinylation. <i>Scientific Reports</i> , 2017 , 7, 40756	4.9	34
161	Complete Mapping of Complex Disulfide Patterns with Closely-Spaced Cysteines by In-Source Reduction and Data-Dependent Mass Spectrometry. <i>Analytical Chemistry</i> , 2017 , 89, 5949-5957	7.8	25
160	An Optimized Shotgun Strategy for the Rapid Generation of Comprehensive Human Proteomes. <i>Cell Systems</i> , 2017 , 4, 587-599.e4	10.6	255
159	The ubiquitin ligase Cullin5 regulates NDR1/STK38 stability and NF- B transactivation. <i>Scientific Reports</i> , 2017 , 7, 42800	4.9	25
158	KIT Induces SRC-Mediated Tyrosine Phosphorylation of MITF and Altered Transcription Program in Melanoma. <i>Molecular Cancer Research</i> , 2017 , 15, 1265-1274	6.6	11
157	Cylindromatosis Tumor Suppressor Protein (CYLD) Deubiquitinase is Necessary for Proper Ubiquitination and Degradation of the Epidermal Growth Factor Receptor. <i>Molecular and Cellular Proteomics</i> , 2017 , 16, 1433-1446	7.6	11

156	Phosphoproteomics of Primary Cells Reveals Druggable Kinase Signatures in Ovarian Cancer. <i>Cell Reports</i> , 2017 , 18, 3242-3256	10.6	59
155	Proteomics Reveals Global Regulation of Protein SUMOylation by ATM and ATR Kinases during Replication Stress. <i>Cell Reports</i> , 2017 , 21, 546-558	10.6	17
154	Proteomic profiling of archaeological human bone. Royal Society Open Science, 2017, 4, 161004	3.3	50
153	Proteomics insights into DNA damage response and translating this knowledge to clinical strategies. <i>Proteomics</i> , 2017 , 17, 1600018	4.8	10
152	Combinatorial Drug Screening Identifies Ewing Sarcoma-specific Sensitivities. <i>Molecular Cancer Therapeutics</i> , 2017 , 16, 88-101	6.1	13
151	Cetuximab Resistance in Squamous Carcinomas of the Upper Aerodigestive Tract Is Driven by Receptor Tyrosine Kinase Plasticity: Potential for mAb Mixtures. <i>Molecular Cancer Therapeutics</i> , 2016 , 15, 1614-26	6.1	8
150	52 Genetic Loci Influencing MyocardiallMass. <i>Journal of the American College of Cardiology</i> , 2016 , 68, 1435-1448	15.1	76
149	A Conserved Motif Provides Binding Specificity to the PP2A-B56 Phosphatase. <i>Molecular Cell</i> , 2016 , 63, 686-695	17.6	145
148	Analytic framework for peptidomics applied to large-scale neuropeptide identification. <i>Nature Communications</i> , 2016 , 7, 11436	17.4	66
147	miR-625-3p regulates oxaliplatin resistance by targeting MAP2K6-p38 signalling in human colorectal adenocarcinoma cells. <i>Nature Communications</i> , 2016 , 7, 12436	17.4	52
146	Conformation-specific anti-Mad2 monoclonal antibodies for the dissection of checkpoint signaling. <i>MAbs</i> , 2016 , 8, 689-97	6.6	8
145	CDX2 downregulation is associated with poor differentiation and MMR deficiency in colon cancer. <i>Experimental and Molecular Pathology</i> , 2016 , 100, 59-66	4.4	34
144	Disulfide Linkage Characterization of Disulfide Bond-Containing Proteins and Peptides by Reducing Electrochemistry and Mass Spectrometry. <i>Analytical Chemistry</i> , 2016 , 88, 1585-92	7.8	28
143	Protein sequences bound to mineral surfaces persist into deep time. <i>ELife</i> , 2016 , 5,	8.9	118
142	Metaproteomics of saliva identifies human protein markers specific for individuals with periodontitis and dental caries compared to orally healthy controls. <i>PeerJ</i> , 2016 , 4, e2433	3.1	44
141	Offline High pH Reversed-Phase Peptide Fractionation for Deep Phosphoproteome Coverage. <i>Methods in Molecular Biology</i> , 2016 , 1355, 179-92	1.4	30
140	Simple and Reproducible Sample Preparation for Single-Shot Phosphoproteomics with High Sensitivity. <i>Methods in Molecular Biology</i> , 2016 , 1355, 251-60	1.4	28
139	From Phosphosites to Kinases. <i>Methods in Molecular Biology</i> , 2016 , 1355, 307-21	1.4	15

(2014-2016)

138	Systems Analysis for Interpretation of Phosphoproteomics Data. <i>Methods in Molecular Biology</i> , 2016 , 1355, 341-60	1.4	12
137	Multilayered proteomics reveals molecular switches dictating ligand-dependent EGFR trafficking. Nature Structural and Molecular Biology, 2016 , 23, 608-18	17.6	66
136	Ctk1 function is necessary for full translation initiation activity in Saccharomyces cerevisiae. <i>Eukaryotic Cell</i> , 2015 , 14, 86-95		12
135	Ubiquitin-specific Protease 11 (USP11) Deubiquitinates Hybrid Small Ubiquitin-like Modifier (SUMO)-Ubiquitin Chains to Counteract RING Finger Protein 4 (RNF4). <i>Journal of Biological Chemistry</i> , 2015 , 290, 15526-15537	5.4	22
134	SUMO-2 Orchestrates Chromatin Modifiers in Response to DNA Damage. <i>Cell Reports</i> , 2015 , 10, 1778-1	791. 6	90
133	In vivo quantitative phosphoproteomic profiling identifies novel regulators of castration-resistant prostate cancer growth. <i>Oncogene</i> , 2015 , 34, 2764-76	9.2	47
132	Ancient proteins resolve the evolutionary history of Darwin's South American ungulates. <i>Nature</i> , 2015 , 522, 81-4	50.4	210
131	System-wide Analysis of SUMOylation Dynamics in Response to Replication Stress Reveals Novel Small Ubiquitin-like Modified Target Proteins and Acceptor Lysines Relevant for Genome Stability. <i>Molecular and Cellular Proteomics</i> , 2015 , 14, 1419-34	7.6	59
130	Recent findings and technological advances in phosphoproteomics for cells and tissues. <i>Expert Review of Proteomics</i> , 2015 , 12, 469-87	4.2	63
129	Molecular evidence of use of hide glue in 4th millennium BC Europe. <i>Journal of Archaeological Science</i> , 2015 , 63, 65-71	2.9	21
128	Temporal proteomics of NGF-TrkA signaling identifies an inhibitory role for the E3 ligase Cbl-b in neuroblastoma cell differentiation. <i>Science Signaling</i> , 2015 , 8, ra40	8.8	52
127	Protein kinase A stimulates Kv7.1 surface expression by regulating Nedd4-2-dependent endocytic trafficking. <i>American Journal of Physiology - Cell Physiology</i> , 2015 , 309, C693-706	5.4	5
126	Ubiquitin-SUMO circuitry controls activated fanconi anemia ID complex dosage in response to DNA damage. <i>Molecular Cell</i> , 2015 , 57, 150-64	17.6	89
125	Direct evidence of milk consumption from ancient human dental calculus. <i>Scientific Reports</i> , 2014 , 4, 7104	4.9	125
124	Pathogens and host immunity in the ancient human oral cavity. <i>Nature Genetics</i> , 2014 , 46, 336-44	36.3	353
123	Uncovering SUMOylation dynamics during cell-cycle progression reveals FoxM1 as a key mitotic SUMO target protein. <i>Molecular Cell</i> , 2014 , 53, 1053-66	17.6	132
122	Resolution of the type material of the Asian elephant, Elephas maximus Linnaeus, 1758 (Proboscidea, Elephantidae). <i>Zoological Journal of the Linnean Society</i> , 2014 , 170, 222-232	2.4	24
121	Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics. <i>Nature Methods</i> , 2014 , 11, 868-74	21.6	50

120	Analysis of changes in SUMO-2/3 modification during breast cancer progression and metastasis. Journal of Proteome Research, 2014 , 13, 3905-18	5.6	22
119	Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization. <i>Nature Genetics</i> , 2014 , 46, 826-36	36.3	199
118	The genetic prehistory of the New World Arctic. <i>Science</i> , 2014 , 345, 1255832	33.3	204
117	Resolution of the type material of the Asian elephant, Elephas maximus Linnaeus, 1758 (Proboscidea, Elephantidae). <i>Zoological Journal of the Linnean Society</i> , 2014 , 170, 222-232	2.4	18
116	Immature truncated O-glycophenotype of cancer directly induces oncogenic features. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, E4066-75	11.5	185
115	The PI3-kinase isoform p110Is essential for cell transformation induced by the D816V mutant of c-Kit in a lipid-kinase-independent manner. <i>Oncogene</i> , 2014 , 33, 5360-9	9.2	12
114	B-lymphoid tyrosine kinase (Blk) is an oncogene and a potential target for therapy with dasatinib in cutaneous T-cell lymphoma (CTCL). <i>Leukemia</i> , 2014 , 28, 2109-12	10.7	23
113	Analytical utility of mass spectral binning in proteomic experiments by SPectral Immonium Ion Detection (SPIID). <i>Molecular and Cellular Proteomics</i> , 2014 , 13, 1914-24	7.6	15
112	A direct role of Mad1 in the spindle assembly checkpoint beyond Mad2 kinetochore recruitment. <i>EMBO Reports</i> , 2014 , 15, 282-90	6.5	29
111	Rapid and deep proteomes by faster sequencing on a benchtop quadrupole ultra-high-field Orbitrap mass spectrometer. <i>Journal of Proteome Research</i> , 2014 , 13, 6187-95	5.6	134
110	Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics. <i>Journal of Proteome Research</i> , 2014 , 13, 6176-86	5.6	194
109	qcML: an exchange format for quality control metrics from mass spectrometry experiments. <i>Molecular and Cellular Proteomics</i> , 2014 , 13, 1905-13	7.6	36
108	Predicting kinase activity in angiotensin receptor phosphoproteomes based on sequence-motifs and interactions. <i>PLoS ONE</i> , 2014 , 9, e94672	3.7	7
107	Comprehensive identification of SUMO2/3 targets and their dynamics during mitosis. <i>PLoS ONE</i> , 2014 , 9, e100692	3.7	17
106	Species identification of archaeological skin objects from Danish bogs: comparison between mass spectrometry-based peptide sequencing and microscopy-based methods. <i>PLoS ONE</i> , 2014 , 9, e106875	3.7	49
105	SILAC-based temporal phosphoproteomics. <i>Methods in Molecular Biology</i> , 2014 , 1188, 125-48	1.4	9
104	Structures of Down syndrome kinases, DYRKs, reveal mechanisms of kinase activation and substrate recognition. <i>Structure</i> , 2013 , 21, 986-96	5.2	99
103	Genomic and proteomic analyses of Prdm5 reveal interactions with insulator binding proteins in embryonic stem cells. <i>Molecular and Cellular Biology</i> , 2013 , 33, 4504-16	4.8	24

(2012-2013)

102	Functional proteomics defines the molecular switch underlying FGF receptor trafficking and cellular outputs. <i>Molecular Cell</i> , 2013 , 51, 707-22	17.6	105
101	TIMP-1 increases expression and phosphorylation of proteins associated with drug resistance in breast cancer cells. <i>Journal of Proteome Research</i> , 2013 , 12, 4136-51	5.6	26
100	The SH2 domain interaction landscape. <i>Cell Reports</i> , 2013 , 3, 1293-305	10.6	89
99	RNF4 is required for DNA double-strand break repair in vivo. <i>Cell Death and Differentiation</i> , 2013 , 20, 490-502	12.7	79
98	Identification of heart rate-associated loci and their effects on cardiac conduction and rhythm disorders. <i>Nature Genetics</i> , 2013 , 45, 621-31	36.3	219
97	Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. <i>Nature</i> , 2013 , 499, 74-8	50.4	563
96	Status of large-scale analysis of post-translational modifications by mass spectrometry. <i>Molecular and Cellular Proteomics</i> , 2013 , 12, 3444-52	7.6	406
95	Systems biology approach identifies the kinase Csnk1a1 as a regulator of the DNA damage response in embryonic stem cells. <i>Science Signaling</i> , 2013 , 6, ra5	8.8	22
94	Phosphorylation variation during the cell cycle scales with structural propensities of proteins. <i>PLoS Computational Biology</i> , 2013 , 9, e1002842	5	48
93	In vivo phosphoproteomics analysis reveals the cardiac targets of 🗟 drenergic receptor signaling. <i>Science Signaling</i> , 2013 , 6, rs11	8.8	129
92	Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns. <i>Cell Reports</i> , 2012 , 2, 419-31	10.6	405
91	A major lineage of enteroendocrine cells coexpress CCK, secretin, GIP, GLP-1, PYY, and neurotensin but not somatostatin. <i>Endocrinology</i> , 2012 , 153, 5782-95	4.8	231
90	Correction to Feasibility of Large-Scale Phosphoproteomics with Higher Energy Collisional Dissociation Fragmentation. <i>Journal of Proteome Research</i> , 2012 , 11, 3506-3508	5.6	10
89	Optimized fast and sensitive acquisition methods for shotgun proteomics on a quadrupole orbitrap mass spectrometer. <i>Journal of Proteome Research</i> , 2012 , 11, 3487-97	5.6	221
88	Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response. <i>Molecular Cell</i> , 2012 , 46, 212-25	17.6	239
87	Development of an analytical methodology for the determination of the antiparasitic drug toltrazuril and its two metabolites in surface water, soil and animal manure. <i>Analytica Chimica Acta</i> , 2012 , 755, 69-76	6.6	27
86	Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. <i>Nature Communications</i> , 2012 , 3, 876	17.4	248
85	Proteomic analysis of a pleistocene mammoth femur reveals more than one hundred ancient bone proteins. <i>Journal of Proteome Research</i> , 2012 , 11, 917-26	5.6	150

84	The Ndc80 internal loop is required for recruitment of the Ska complex to establish end-on microtubule attachment to kinetochores. <i>Journal of Cell Science</i> , 2012 , 125, 3243-53	5.3	52
83	Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues. <i>Molecular and Cellular Proteomics</i> , 2012 , 11, 1578-85	7.6	214
82	ALGABA(A) receptors are high-affinity targets for Ehydroxybutyric acid (GHB). <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 13404-9	11.5	72
81	GeLCMS for in-depth protein characterization and advanced analysis of proteomes. <i>Methods in Molecular Biology</i> , 2011 , 753, 143-55	1.4	31
80	Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation. <i>Science Signaling</i> , 2011 , 4, ra48	8.8	204
79	System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. <i>Science Signaling</i> , 2011 , 4, rs3	8.8	347
78	Pre-Clovis mastodon hunting 13,800 years ago at the Manis site, Washington. <i>Science</i> , 2011 , 334, 351-3	33.3	129
77	Pinpointing phosphorylation sites: Quantitative filtering and a novel site-specific x-ion fragment. Journal of Proteome Research, 2011 , 10, 2937-48	5.6	24
76	Andromeda: a peptide search engine integrated into the MaxQuant environment. <i>Journal of Proteome Research</i> , 2011 , 10, 1794-805	5.6	3402
75	Effective representation and storage of mass spectrometry-based proteomic data sets for the scientific community. <i>Science Signaling</i> , 2011 , 4, pe7	8.8	13
74	Separation of the gluconeogenic and mitochondrial functions of PGC-1{alpha} through S6 kinase. <i>Genes and Development</i> , 2011 , 25, 1232-44	12.6	83
73	Global phosphoproteome profiling reveals unanticipated networks responsive to cisplatin treatment of embryonic stem cells. <i>Molecular and Cellular Biology</i> , 2011 , 31, 4964-77	4.8	49
72	Phosphorylation of the yeast Eubulin Tub4 regulates microtubule function. <i>PLoS ONE</i> , 2011 , 6, e19700	3.7	38
71	Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. <i>Molecular and Cellular Proteomics</i> , 2010 , 9, 1540-53	7.6	115
70	MSQuant, an open source platform for mass spectrometry-based quantitative proteomics. <i>Journal of Proteome Research</i> , 2010 , 9, 393-403	5.6	225
69	Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. <i>Science Signaling</i> , 2010 , 3, ra3	8.8	1106
68	Feasibility of large-scale phosphoproteomics with higher energy collisional dissociation fragmentation. <i>Journal of Proteome Research</i> , 2010 , 9, 6786-94	5.6	139
67	Yeast expression proteomics by high-resolution mass spectrometry. <i>Methods in Enzymology</i> , 2010 , 470, 259-80	1.7	8

(2008-2010)

66	Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. <i>Cell</i> , 2010 , 142, 967-80	56.2	579
65	The phosphoproteome of toll-like receptor-activated macrophages. <i>Molecular Systems Biology</i> , 2010 , 6, 371	12.2	113
64	Phosphorylation of histone H3 Thr-45 is linked to apoptosis. <i>Journal of Biological Chemistry</i> , 2009 , 284, 16575-16583	5.4	85
63	Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. <i>Molecular and Cellular Proteomics</i> , 2009 , 8, 2796-808	7.6	165
62	A dual pressure linear ion trap Orbitrap instrument with very high sequencing speed. <i>Molecular and Cellular Proteomics</i> , 2009 , 8, 2759-69	7.6	379
61	Large-scale proteomics analysis of the human kinome. <i>Molecular and Cellular Proteomics</i> , 2009 , 8, 1751-	64 6	236
60	High-accuracy identification and bioinformatic analysis of in vivo protein phosphorylation sites in yeast. <i>Proteomics</i> , 2009 , 9, 4642-52	4.8	103
59	Proteomics strategy for quantitative protein interaction profiling in cell extracts. <i>Nature Methods</i> , 2009 , 6, 741-4	21.6	121
58	A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. <i>Nature Protocols</i> , 2009 , 4, 698-705	18.8	637
57	Lysine acetylation targets protein complexes and co-regulates major cellular functions. <i>Science</i> , 2009 , 325, 834-40	33.3	3316
56	Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. <i>Molecular Cell</i> , 2009 , 36, 326-39	17.6	245
55	Global analysis of the yeast osmotic stress response by quantitative proteomics. <i>Molecular BioSystems</i> , 2009 , 5, 1337-46		108
54	Global and site-specific quantitative phosphoproteomics: principles and applications. <i>Annual Review of Pharmacology and Toxicology</i> , 2009 , 49, 199-221	17.9	350
53	High accuracy mass spectrometry in large-scale analysis of protein phosphorylation. <i>Methods in Molecular Biology</i> , 2009 , 492, 131-42	1.4	43
52	Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. <i>Nature</i> , 2008 , 455, 1251-4	50.4	745
51	Ubc9 sumoylation regulates SUMO target discrimination. <i>Molecular Cell</i> , 2008 , 31, 371-82	17.6	169
50	Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. <i>Molecular Cell</i> , 2008 , 31, 438-48	17.6	495

48	Multi-spectra peptide sequencing and its applications to multistage mass spectrometry. <i>Bioinformatics</i> , 2008 , 24, i416-23	7.2	25
47	Identification of new chicken egg proteins by mass spectrometry-based proteomic analysis. <i>Worldas Poultry Science Journal</i> , 2008 , 64, 209-218	3	22
46	Investigation of protein-tyrosine phosphatase 1B function by quantitative proteomics. <i>Molecular and Cellular Proteomics</i> , 2008 , 7, 1763-77	7.6	91
45	Profiling the phospho-status of the BKCa channel alpha subunit in rat brain reveals unexpected patterns and complexity. <i>Molecular and Cellular Proteomics</i> , 2008 , 7, 2188-98	7.6	70
44	Quantitative phosphoproteome analysis of a mouse liver cell line reveals specificity of phosphatase inhibitors. <i>Proteomics</i> , 2008 , 8, 4534-46	4.8	89
43	Temporal Dynamics of EGF Receptor Signaling by Quantitative Proteomics 2008, 190-198		1
42	Nanoelectrospray peptide mapping revisited: Composite survey spectra allow high dynamic range protein characterization without LCMS on an orbitrap mass spectrometer. <i>International Journal of Mass Spectrometry</i> , 2007 , 268, 158-167	1.9	8
41	Phosphoproteins of the chicken eggshell calcified layer. <i>Proteomics</i> , 2007 , 7, 106-15	4.8	95
40	Quantitative proteomic assessment of very early cellular signaling events. <i>Nature Biotechnology</i> , 2007 , 25, 566-8	44.5	103
39	A mass spectrometry-friendly database for cSNP identification. <i>Nature Methods</i> , 2007 , 4, 465-6	21.6	57
39	A mass spectrometry-friendly database for cSNP identification. <i>Nature Methods</i> , 2007 , 4, 465-6 Higher-energy C-trap dissociation for peptide modification analysis. <i>Nature Methods</i> , 2007 , 4, 709-12	21.6	57 727
38	Higher-energy C-trap dissociation for peptide modification analysis. <i>Nature Methods</i> , 2007 , 4, 709-12 Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation. <i>EMBO Journal</i>	21.6	727
38 37	Higher-energy C-trap dissociation for peptide modification analysis. <i>Nature Methods</i> , 2007 , 4, 709-12 Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation. <i>EMBO Journal</i> , 2007 , 26, 2797-807 Quantitative proteomic profiling of membrane proteins from the mouse brain cortex, hippocampus, and cerebellum using the HysTag reagent: mapping of neurotransmitter receptors	21.6	7 ² 7
38 37 36	Higher-energy C-trap dissociation for peptide modification analysis. <i>Nature Methods</i> , 2007 , 4, 709-12 Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation. <i>EMBO Journal</i> , 2007 , 26, 2797-807 Quantitative proteomic profiling of membrane proteins from the mouse brain cortex, hippocampus, and cerebellum using the HysTag reagent: mapping of neurotransmitter receptors and ion channels. <i>Brain Research</i> , 2007 , 1134, 95-106 MAPU: Max-Planck Unified database of organellar, cellular, tissue and body fluid proteomes.	21.6 13 3.7	7 ² 7 160 39
38 37 36 35	Higher-energy C-trap dissociation for peptide modification analysis. <i>Nature Methods</i> , 2007 , 4, 709-12 Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation. <i>EMBO Journal</i> , 2007 , 26, 2797-807 Quantitative proteomic profiling of membrane proteins from the mouse brain cortex, hippocampus, and cerebellum using the HysTag reagent: mapping of neurotransmitter receptors and ion channels. <i>Brain Research</i> , 2007 , 1134, 95-106 MAPU: Max-Planck Unified database of organellar, cellular, tissue and body fluid proteomes. <i>Nucleic Acids Research</i> , 2007 , 35, D771-9 The serine/threonine/tyrosine phosphoproteome of the model bacterium Bacillus subtilis.	21.6 13 3·7 20.1	7 ² 7 160 39 56
38 37 36 35 34	Higher-energy C-trap dissociation for peptide modification analysis. <i>Nature Methods</i> , 2007 , 4, 709-12 Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation. <i>EMBO Journal</i> , 2007 , 26, 2797-807 Quantitative proteomic profiling of membrane proteins from the mouse brain cortex, hippocampus, and cerebellum using the HysTag reagent: mapping of neurotransmitter receptors and ion channels. <i>Brain Research</i> , 2007 , 1134, 95-106 MAPU: Max-Planck Unified database of organellar, cellular, tissue and body fluid proteomes. <i>Nucleic Acids Research</i> , 2007 , 35, D771-9 The serine/threonine/tyrosine phosphoproteome of the model bacterium Bacillus subtilis. <i>Molecular and Cellular Proteomics</i> , 2007 , 6, 697-707	21.6 13 3.7 20.1 7.6	727 160 39 56 309

(2002-2006)

30	The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. <i>Genome Biology</i> , 2006 , 7, R80	18.3	514
29	Status of complete proteome analysis by mass spectrometry: SILAC labeled yeast as a model system. <i>Genome Biology</i> , 2006 , 7, R50	18.3	224
28	Top-down protein sequencing and MS3 on a hybrid linear quadrupole ion trap-orbitrap mass spectrometer. <i>Molecular and Cellular Proteomics</i> , 2006 , 5, 949-58	7.6	163
27	Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. <i>Cell</i> , 2006 , 127, 635-48	3 56.2	2797
26	Proteomic analysis of the acid-soluble organic matrix of the chicken calcified eggshell layer. <i>Proteomics</i> , 2006 , 6, 3801-10	4.8	162
25	In-gel digestion for mass spectrometric characterization of proteins and proteomes. <i>Nature Protocols</i> , 2006 , 1, 2856-60	18.8	3440
24	Proteomic mapping of brain plasma membrane proteins. <i>Molecular and Cellular Proteomics</i> , 2005 , 4, 407	2 -5 86	141
23	SUMO modification of the ubiquitin-conjugating enzyme E2-25K. <i>Nature Structural and Molecular Biology</i> , 2005 , 12, 264-9	17.6	158
22	Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. <i>Molecular and Cellular Proteomics</i> , 2005 , 4, 2010-21	7.6	1233
21	Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. <i>Molecular and Cellular Proteomics</i> , 2005 , 4, 310-27	7.6	665
20	Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 13417-22	11.5	288
19	HysTaga novel proteomic quantification tool applied to differential display analysis of membrane proteins from distinct areas of mouse brain. <i>Molecular and Cellular Proteomics</i> , 2004 , 3, 82-92	7.6	79
18	Tyrosine phosphoproteomics of fibroblast growth factor signaling: a role for insulin receptor substrate-4. <i>Journal of Biological Chemistry</i> , 2004 , 279, 46438-47	5.4	84
17	De novo sequencing of antimicrobial peptides isolated from the venom glands of the wolf spider Lycosa singoriensis. <i>Journal of Mass Spectrometry</i> , 2004 , 39, 193-201	2.2	62
16	Trypsin cleaves exclusively C-terminal to arginine and lysine residues. <i>Molecular and Cellular Proteomics</i> , 2004 , 3, 608-14	7.6	804
15	Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. <i>Cell</i> , 2003 , 115, 629-40	56.2	742
14	Signaling initiated by overexpression of the fibroblast growth factor receptor-1 investigated by mass spectrometry. <i>Molecular and Cellular Proteomics</i> , 2003 , 2, 29-36	7.6	67
13	Can relative cleavage frequencies in peptides provide additional sequence information?. International Journal of Mass Spectrometry, 2002, 219, 283-294	1.9	37

12	Electronic Excitation Gives Informative Fragmentation of Polypeptide Cations and Anions. <i>European Journal of Mass Spectrometry</i> , 2002 , 8, 117-121	1.1	32
11	Comparison of electron capture dissociation and collisionally activated dissociation of polycations of peptide nucleic acids. <i>Rapid Communications in Mass Spectrometry</i> , 2001 , 15, 969-74	2.2	30
10	Advantages of external accumulation for electron capture dissociation in Fourier transform mass spectrometry. <i>Analytical Chemistry</i> , 2001 , 73, 2998-3005	7.8	101
9	Electron capture dissociation of singly and multiply phosphorylated peptides. <i>Rapid Communications in Mass Spectrometry</i> , 2000 , 14, 1793-800	2.2	325
8	Intramolecular hydrogen atom transfer in hydrogen-deficient polypeptide radical cations. <i>Chemical Physics Letters</i> , 2000 , 330, 558-562	2.5	48
7	A novel LC system embeds analytes in pre-formed gradients for rapid, ultra-robust proteomics		2
6	Limits for resolving tandem mass tag reporter ions with identical integer mass using phase constrained spectrum deconvolution		1
5	Causal integration of multi-omics data with prior knowledge to generate mechanistic hypotheses		5
4	Early Pleistocene enamel proteome sequences from Dmanisi resolve Stephanorhinus phylogeny		5
3	Protein aggregation capture on microparticles enables multi-purpose proteomics sample preparation		1
2	Rapid and site-specific deep phosphoproteome profiling by data-independent acquisition (DIA) without the need for spectral libraries		3
1	A Compact Quadrupole-Orbitrap Mass Spectrometer with FAIMS Interface Improves Proteome		2