Maiken Cavling Arendrup

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4668131/publications.pdf

Version: 2024-02-01

157 papers

10,869 citations

41344 49 h-index 99 g-index

158 all docs

158 docs citations

158 times ranked

8728 citing authors

#	Article	lF	Citations
1	Invasive Candidiasis. New England Journal of Medicine, 2015, 373, 1445-1456.	27.0	962
2	Invasive candidiasis. Nature Reviews Disease Primers, 2018, 4, 18026.	30.5	841
3	Frequency and Evolution of Azole Resistance in <i>Aspergillus fumigatus</i> Associated with Treatment Failure1. Emerging Infectious Diseases, 2009, 15, 1068-1076.	4.3	692
4	Multidrug-Resistant Candida: Epidemiology, Molecular Mechanisms, and Treatment. Journal of Infectious Diseases, 2017, 216, S445-S451.	4.0	450
5	EUCAST technical note on the EUCAST definitive document EDef 7.2: method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts EDef 7.2 (EUCAST-AFST). Clinical Microbiology and Infection, 2012, 18, E246-E247.	6.0	368
6	Epidemiology of invasive candidiasis. Current Opinion in Critical Care, 2010, 16, 445-452.	3.2	326
7	International expert opinion on the management of infection caused by azole-resistant Aspergillus fumigatus. Drug Resistance Updates, 2015, 21-22, 30-40.	14.4	262
8	Echinocandin resistance. Current Opinion in Infectious Diseases, 2014, 27, 484-492.	3.1	259
9	How to Optimize the Use of Blood Cultures for the Diagnosis of Bloodstream Infections? A State-of-the Art. Frontiers in Microbiology, 2016, 7, 697.	3.5	234
10	Environmental Study of Azole-Resistant <i>Aspergillus fumigatus</i> and Other Aspergilli in Austria, Denmark, and Spain. Antimicrobial Agents and Chemotherapy, 2010, 54, 4545-4549.	3.2	217
11	National Surveillance of Fungemia in Denmark (2004 to 2009). Journal of Clinical Microbiology, 2011, 49, 325-334.	3.9	206
12	Amphotericin B and Caspofungin Resistance in Candida glabrata Isolates Recovered from a Critically Ill Patient. Clinical Infectious Diseases, 2006, 42, 938-944.	5.8	184
13	Acquired antifungal drug resistance in <i>Aspergillus fumigatus:</i> epidemiology and detection. Medical Mycology, 2011, 49, S90-S95.	0.7	172
14	Discovery of a hapE Mutation That Causes Azole Resistance in Aspergillus fumigatus through Whole Genome Sequencing and Sexual Crossing. PLoS ONE, 2012, 7, e50034.	2.5	168
15	Aspergillus Species and Other Molds in Respiratory Samples from Patients with Cystic Fibrosis: a Laboratory-Based Study with Focus on Aspergillus fumigatus Azole Resistance. Journal of Clinical Microbiology, 2011, 49, 2243-2251.	3.9	164
16	Detecting Blastocystis using parasitologic and DNA-based methods: a comparative study. Diagnostic Microbiology and Infectious Disease, 2007, 59, 303-307.	1.8	159
17	Management of invasive candidiasis and candidemia in adult non-neutropenic intensive care unit patients: Part I. Epidemiology and diagnosis. Intensive Care Medicine, 2009, 35, 55-62.	8.2	148
18	Seminational Surveillance of Fungemia in Denmark: Notably High Rates of Fungemia and Numbers of Isolates with Reduced Azole Susceptibility. Journal of Clinical Microbiology, 2005, 43, 4434-4440.	3.9	147

#	Article	IF	Citations
19	Diagnostic Issues, Clinical Characteristics, and Outcomes for Patients with Fungemia. Journal of Clinical Microbiology, 2011, 49, 3300-3308.	3.9	147
20	Echinocandin Susceptibility Testing of <i> Candida < /i > Species: Comparison of EUCAST EDef 7.1, CLSI M27-A3, Etest, Disk Diffusion, and Agar Dilution Methods with RPMI and IsoSensitest Media. Antimicrobial Agents and Chemotherapy, 2010, 54, 426-439.</i>	3.2	144
21	Development of Azole Resistance in Aspergillus fumigatus during Azole Therapy Associated with Change in Virulence. PLoS ONE, 2010, 5, e10080.	2.5	143
22	Five-Hour Diagnosis of Dermatophyte Nail Infections with Specific Detection of Trichophyton rubrum. Journal of Clinical Microbiology, 2007, 45, 1200-1204.	3.9	129
23	Clinical breakpoints for voriconazole and Candida spp. revisited: review of microbiologic, molecular, pharmacodynamic, and clinical data as they pertain to the development of species-specific interpretive criteria. Diagnostic Microbiology and Infectious Disease, 2011, 70, 330-343.	1.8	117
24	Breakthrough <i>Aspergillus fumigatus</i> and <i>Candida albicans</i> Double Infection during Caspofungin Treatment: Laboratory Characteristics and Implication for Susceptibility Testing. Antimicrobial Agents and Chemotherapy, 2009, 53, 1185-1193.	3.2	110
25	Emerging Terbinafine Resistance in <i>Trichophyton</i> : Clinical Characteristics, Squalene Epoxidase Gene Mutations, and a Reliable EUCAST Method for Detection. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	109
26	DETECTION OF BLASTOCYSTIS HOMINIS IN UNPRESERVED STOOL SPECIMENS BY USING POLYMERASE CHAIN REACTION. Journal of Parasitology, 2006, 92, 1081-1087.	0.7	107
27	Differential <i>In Vivo</i> Activities of Anidulafungin, Caspofungin, and Micafungin against Candida glabrata Isolates with and without <i>FKS</i> Resistance Mutations. Antimicrobial Agents and Chemotherapy, 2012, 56, 2435-2442.	3.2	107
28	Breakpoints for antifungal agents: An update from EUCAST focussing on echinocandins against Candida spp. and triazoles against Aspergillus spp Drug Resistance Updates, 2013, 16, 81-95.	14.4	106
29	Establishing In Vitro-In Vivo Correlations for Aspergillus fumigatus: the Challenge of Azoles versus Echinocandins. Antimicrobial Agents and Chemotherapy, 2008, 52, 3504-3511.	3.2	98
30	Candida and candidaemia. Susceptibility and epidemiology. Danish Medical Journal, 2013, 60, B4698.	0.5	98
31	<i>In Vitro</i> Activity of Isavuconazole and Comparators against Clinical Isolates of the <i>Mucorales</i> Order. Antimicrobial Agents and Chemotherapy, 2015, 59, 7735-7742.	3.2	89
32	Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms. Microbial Cell, 2018, 5, 300-326.	3.2	81
33	Management of invasive candidiasis and candidemia in adult non-neutropenic intensive care unit patients: Part II. Treatment. Intensive Care Medicine, 2009, 35, 206-214.	8.2	75
34	Molecular basis of antifungal drug resistance in yeasts. International Journal of Antimicrobial Agents, 2017, 50, 599-606.	2.5	72
35	Molecular diagnosis of dermatophyte infections. Current Opinion in Infectious Diseases, 2012, 25, 126-134.	3.1	69
36	The one health problem of azole resistance in Aspergillus fumigatus: current insights and future research agenda. Fungal Biology Reviews, 2020, 34, 202-214.	4.7	68

#	Article	IF	Citations
37	Azole-Resistance in Aspergillus terreus and Related Species: An Emerging Problem or a Rare Phenomenon?. Frontiers in Microbiology, 2018, 9, 516.	3.5	66
38	Photodynamic therapy treatment of superficial fungal infections: A systematic review. Photodiagnosis and Photodynamic Therapy, 2020, 31, 101774.	2.6	66
39	Azole-Resistant Invasive Aspergillosis: Relationship to Agriculture. Current Fungal Infection Reports, 2012, 6, 178-191.	2.6	64
40	Determination of Isavuconazole Susceptibility of Aspergillus and Candida Species by the EUCAST Method. Antimicrobial Agents and Chemotherapy, 2013, 57, 5426-5431.	3.2	64
41	Stepwise emergence of azole, echinocandin and amphotericin B multidrug resistance <i>in vivo</i> in <i>Candida albicans</i> orchestrated by multiple genetic alterations. Journal of Antimicrobial Chemotherapy, 2015, 70, 2551-2555.	3.0	64
42	Caspofungin Etest Susceptibility Testing of Candida Species: Risk of Misclassification of Susceptible Isolates of C. glabrata and C. krusei when Adopting the Revised CLSI Caspofungin Breakpoints. Antimicrobial Agents and Chemotherapy, 2012, 56, 3965-3968.	3.2	61
43	Molecular screening for Candida orthopsilosis and Candidametapsilosis among Danish Candida parapsilosis group blood cultureisolates: proposal of a new RFLP profile for differentiation. Journal of Medical Microbiology, 2010, 59, 414-420.	1.8	60
44	Candida palmioleophila: Characterization of a Previously Overlooked Pathogen and Its Unique Susceptibility Profile in Comparison with Five Related Species. Journal of Clinical Microbiology, 2011, 49, 549-556.	3.9	60
45	Optimized 5-hour multiplex PCR test for the detection of tinea unguium: performance in a routine PCR laboratory. Medical Mycology, 2010, 48, 828-831.	0.7	55
46	In Vivo Emergence of Aspergillus terreus with Reduced Azole Susceptibility and a Cyp51a M217I Alteration. Journal of Infectious Diseases, 2012, 206, 981-985.	4.0	55
47	Echinocandin Susceptibility Testing of <i>Candida</i> spp. Using EUCAST EDef 7.1 and CLSI M27-A3 Standard Procedures: Analysis of the Influence of Bovine Serum Albumin Supplementation, Storage Time, and Drug Lots. Antimicrobial Agents and Chemotherapy, 2011, 55, 1580-1587.	3.2	53
48	Breakpoints for Susceptibility Testing Should Not Divide Wild-Type Distributions of Important Target Species. Antimicrobial Agents and Chemotherapy, 2009, 53, 1628-1629.	3.2	52
49	Darier Disease Complicated by Terbinafine-resistant Trichophyton rubrum: A Case Report. Acta Dermato-Venereologica, 2017, 97, 139-140.	1.3	51
50	Invasive aspergillosis in patients with severe COVID-19 pneumonia. Clinical Microbiology and Infection, 2021, 27, 147-148.	6.0	51
51	How to: perform antifungal susceptibility testing of microconidia-forming dermatophytes following the new reference EUCAST method E.Def 11.0, exemplified by Trichophyton. Clinical Microbiology and Infection, 2021, 27, 55-60.	6.0	51
52	<i>In Vitro</i> Activity of Ibrexafungerp (SCY-078) against <i>Candida auris</i> Isolates as Determined by EUCAST Methodology and Comparison with Activity against <i>C. albicans</i> and <i>C. glabrata</i> and with the Activities of Six Comparator Agents. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	50
53	EUCAST Determination of Olorofim (F901318) Susceptibility of Mold Species, Method Validation, and MICs. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	49
54	In Vivo Selection of a Unique Tandem Repeat Mediated Azole Resistance Mechanism (TR ₁₂₀) in <i>Aspergillus fumigatus cyp51A</i> , Denmark. Emerging Infectious Diseases, 2019, 25, 577-580.	4.3	49

#	Article	IF	CITATIONS
55	Performance of matrixâ€assisted laser desorptionâ€time of flight mass spectrometry for identification of clinical yeast isolates. Mycoses, 2013, 56, 229-235.	4.0	48
56	Invasive Candidiasis. New England Journal of Medicine, 2016, 374, 793-795.	27.0	47
57	Molecular epidemiology and <i>in vitro</i> antifungal susceptibility testing of 108 clinical <i>Cryptococcus neoformans sensu lato</i> and <i>Cryptococcus gattii sensu lato</i> isolates from Denmark. Mycoses, 2016, 59, 576-584.	4.0	46
58	Stepwise Development of a Homozygous S80P Substitution in Fks1p, Conferring Echinocandin Resistance in Candida tropicalis. Antimicrobial Agents and Chemotherapy, 2013, 57, 614-617.	3.2	45
59	Azole resistance in Aspergillus fumigatus from bronchoalveolar lavage fluid samples of patients with chronic diseases. Journal of Antimicrobial Chemotherapy, 2013, 68, 1497-1504.	3.0	45
60	Recurrent terbinafine resistant <i>Trichophyton rubrum </i> infection in a child with congenital ichthyosis. Pediatric Dermatology, 2018, 35, 259-260.	0.9	45
61	Implications of the EUCAST Trailing Phenomenon in Candida tropicalis for the <i>In Vivo</i> Susceptibility in Invertebrate and Murine Models. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	43
62	APX001A <i>In Vitro</i> Activity against Contemporary Blood Isolates and Candida auris Determined by the EUCAST Reference Method. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	42
63	Evaluation of Caspofungin Susceptibility Testing by the New Vitek 2 AST-YS06 Yeast Card Using a Unique Collection of <i>FKS</i> Wild-Type and Hot Spot Mutant Isolates, Including the Five Most Common Candida Species. Antimicrobial Agents and Chemotherapy, 2013, 57, 177-182.	3.2	41
64	The fading boundaries between patient and environmental routes of triazole resistance selection in Aspergillus fumigatus. PLoS Pathogens, 2019, 15, e1007858.	4.7	41
65	EUCAST breakpoints for antifungals. Drug News and Perspectives, 2010, 23, 93.	1.5	40
66	Invasive Candida Infections and the Harm From Antibacterial Drugs in Critically Ill Patients. Critical Care Medicine, 2015, 43, 594-602.	0.9	39
67	Multicentre validation of 4-well azole agar plates as a screening method for detection of clinically relevant azole-resistant Aspergillus fumigatus. Journal of Antimicrobial Chemotherapy, 2017, 72, 3325-3333.	3.0	39
68	<scp>EUCAST</scp> Technical Note on <i>Candida</i> and micafungin, anidulafungin and fluconazole. Mycoses, 2014, 57, 377-379.	4.0	38
69	Ibrexafungerp: A Novel Oral Triterpenoid Antifungal in Development for the Treatment of Candida auris Infections. Antibiotics, 2020, 9, 539.	3.7	38
70	Multicentre validation of a EUCAST method for the antifungal susceptibility testing of microconidia-forming dermatophytes. Journal of Antimicrobial Chemotherapy, 2020, 75, 1807-1819.	3.0	37
71	Diagnostic Performance of T2Candida Among ICU Patients With Risk Factors for Invasive Candidiasis. Open Forum Infectious Diseases, 2019, 6, ofz136.	0.9	36
72	The Emerging Terbinafine-Resistant <i>Trichophyton</i> Epidemic: What Is the Role of Antifungal Susceptibility Testing?. Dermatology, 2022, 238, 60-79.	2.1	36

#	Article	IF	CITATIONS
73	Increasing Terbinafine Resistance in Danish Trichophyton Isolates 2019–2020. Journal of Fungi (Basel,) Tj ETQq1	1.0.7843	14 rgBT / <mark>O</mark> v
74	Pharmacodynamics of Voriconazole in a Dynamic In Vitro Model of Invasive Pulmonary Aspergillosis: Implications for In Vitro Susceptibility Breakpoints. Journal of Infectious Diseases, 2012, 206, 442-452.	4.0	35
75	Rezafungin <i>In Vitro</i> Activity against Contemporary Nordic Clinical <i>Candida</i> Isolates and <i>Candida auris</i> Determined by the EUCAST Reference Method. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	34
76	Laboratory-based Survey of Dermatophyte Infections in Denmark over a 10-year Period. Acta Dermato-Venereologica, 2008, 88, 614-616.	1.3	33
77	In vitro activity of 23 tea extractions and epigallocatechin gallate against Candida species. Medical Mycology, 2015, 53, 194-198.	0.7	32
78	<i>In Vitro</i> Activity of ASP2397 against Aspergillus Isolates with or without Acquired Azole Resistance Mechanisms. Antimicrobial Agents and Chemotherapy, 2016, 60, 532-536.	3.2	32
79	Typing of Candida isolates from patients with invasive infection and concomitant colonization. Scandinavian Journal of Infectious Diseases, 2010, 42, 109-113.	1.5	30
80	EUCAST Susceptibility Testing of Isavuconazole: MIC Data for Contemporary Clinical Mold and Yeast Isolates. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	30
81	Manogepix (APX001A) <i>In Vitro</i> Activity against Candida auris: Head-to-Head Comparison of EUCAST and CLSI MICs. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	30
82	Rapid and Accurate Identification of <i>Candida albicans</i> Isolates by Use of PNA FISH ^{Flow} . Journal of Clinical Microbiology, 2008, 46, 1537-1540.	3.9	29
83	PCR test for <i>Microsporum canis</i> identification. Medical Mycology, 2013, 51, 576-579.	0.7	29
84	Diagnostic PCR tests for <i>Microsporum audouinii, M. canis </i> i>and <i>Trichophyton </i> i>infections. Medical Mycology, 2010, 48, 486-490.	0.7	27
85	Azole Resistance of (i) Aspergillus fumigatus (i) in Immunocompromised Patients with Invasive Aspergillosis. Emerging Infectious Diseases, 2016, 22, 158-159.	4.3	27
86	Molecular mechanisms of acquired antifungal drug resistance in principal fungal pathogens and EUCAST guidance for their laboratory detection and clinical implications. Journal of Antimicrobial Chemotherapy, 2022, 77, 2053-2073.	3.0	27
87	Echinocandin Failure Case Due to a Previously Unreported <i>FKS1</i> Mutation in Candida krusei. Antimicrobial Agents and Chemotherapy, 2014, 58, 3550-3552.	3.2	26
88	Pediatric Candidemia Epidemiology and Morbidities. Pediatric Infectious Disease Journal, 2019, 38, 464-469.	2.0	26
89	Acute pulmonary aspergillosis in immunocompetent subjects after exposure to bark chippings. Scandinavian Journal of Infectious Diseases, 2006, 38, 945-949.	1.5	25
90	Discovery of a sexual stage in <i>Trichophyton onychocola</i> , a presumed geophilic dermatophyte isolated from toenails of patients with a history of <i>T. rubrum</i> onychomycosis. Medical Mycology, 2015, 53, 798-809.	0.7	25

#	Article	IF	Citations
91	Isavuconazole in a Successful Combination Treatment of Disseminated Mucormycosis in a Child with Acute Lymphoblastic Leukaemia and Generalized Haemochromatosis: A Case Report and Review of the Literature. Mycopathologia, 2019, 184, 81-88.	3.1	25
92	Invasive candidiasis: investigational drugs in the clinical development pipeline and mechanisms of action. Expert Opinion on Investigational Drugs, 2022, 31, 795-812.	4.1	23
93	Echinocandin Susceptibility Testing of Candida Isolates Collected during a 1-Year Period in Sweden. Journal of Clinical Microbiology, 2011, 49, 2516-2521.	3.9	22
94	Azole-Resistant Aspergillus fumigatus Among Danish Cystic Fibrosis Patients: Increasing Prevalence and Dominance of TR34/L98H. Frontiers in Microbiology, 2020, 11, 1850.	3.5	22
95	Differences in epidemiology of candidaemia in the Nordic countries – what is to blame?. Mycoses, 2017, 60, 11-19.	4.0	21
96	Polyphasic data support the splitting of Aspergillus candidus into two species; proposal of Aspergillus dobrogensis sp. nov International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 995-1011.	1.7	21
97	Evaluation of CLSI M44-A2 Disk Diffusion and Associated Breakpoint Testing of Caspofungin and Micafungin Using a Well-Characterized Panel of Wild-Type and <i>fks</i> lot Spot Mutant Candida Isolates. Antimicrobial Agents and Chemotherapy, 2011, 55, 1891-1895.	3.2	20
98	Composite Survival Index to Compare Virulence Changes in Azole-Resistant Aspergillus fumigatus Clinical Isolates. PLoS ONE, 2013, 8, e72280.	2.5	20
99	Fluconazole Pharmacokinetics in Galleria mellonella Larvae and Performance Evaluation of a Bioassay Compared to Liquid Chromatography-Tandem Mass Spectrometry for Hemolymph Specimens. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	20
100	Olorofim Susceptibility Testing of 1,423 Danish Mold Isolates Obtained in 2018-2019 Confirms Uniform and Broad-Spectrum Activity. Antimicrobial Agents and Chemotherapy, 2020, 65, .	3.2	20
101	Genotyping Reveals High Clonal Diversity and Widespread Genotypes of Candida Causing Candidemia at Distant Geographical Areas. Frontiers in Cellular and Infection Microbiology, 2020, 10, 166.	3.9	20
102	Comparison of Dimethyl Sulfoxide and Water as Solvents for Echinocandin Susceptibility Testing by the EUCAST Methodology. Journal of Clinical Microbiology, 2012, 50, 2509-2512.	3.9	19
103	The burden of fungal disease in Denmark. Mycoses, 2015, 58, 15-21.	4.0	19
104	ECMM <i>Candi</i> Regâ€"A ready to use platform for outbreaks and epidemiological studies. Mycoses, 2019, 62, 920-927.	4.0	19
105	Manogepix (APX001A) Displays Potent <i>In Vitro</i> an Unexpected Correlation to Fluconazole MICs. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	19
106	Successful management of invasive aspergillosis presenting as pericarditis in an adult patient with chronic granulomatous disease. Mycoses, 2011, 54, e233-e236.	4.0	17
107	<i>In Vitro</i> Activity of Manogepix (APX001A) and Comparators against Contemporary Molds: MEC Comparison and Preliminary Experience with Colorimetric MIC Determination. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	17
108	Azole resistance in <i>Aspergillus fumigatus</i> . The first 2â€year's Data from the Danish National Surveillance Study, 2018–2020. Mycoses, 2022, 65, 419-428.	4.0	17

#	Article	IF	CITATIONS
109	Diagnostics of fungal infections in the Nordic countries: We still need to improve!. Scandinavian Journal of Infectious Diseases, 2007, 39, 337-343.	1.5	16
110	Successful Treatment of Rhino-Orbital-Cerebral Mucormycosis in a Child With Leukemia. Journal of Pediatric Hematology/Oncology, 2017, 39, e211-e215.	0.6	16
111	Evaluation of MIC Strip Isavuconazole Test for Susceptibility Testing of Wild-Type and Non-Wild-Type Aspergillus fumigatus Isolates. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	15
112	Relevance of heterokaryosis for adaptation and azole-resistance development in <i>Aspergillus fumigatus</i> . Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182886.	2.6	15
113	Update 2016–2018 of the Nationwide Danish Fungaemia Surveillance Study: Epidemiologic Changes in a 15-Year Perspective. Journal of Fungi (Basel, Switzerland), 2021, 7, 491.	3.5	15
114	Isolation of HIV from cultures of purified CD4+ lymphocytes. Journal of Virological Methods, 1991, 35, 15-25.	2.1	14
115	Detection of Polish clinical Aspergillus fumigatus isolates resistant to triazoles. Medical Mycology, 2018, 56, 121-124.	0.7	14
116	Diagnostic accuracy of the $1,3-\hat{l}^2$ -D-glucan test for pneumocystis pneumonia in a tertiary university hospital in Denmark: A retrospective study. Medical Mycology, 2019, 57, 710-717.	0.7	13
117	EUCAST Testing of Isavuconazole Susceptibility in Aspergillus: Comparison of Results for Inoculum Standardization Using Conidium Counting versus Optical Density. Antimicrobial Agents and Chemotherapy, 2014, 58, 6432-6436.	3.2	12
118	Etest ECVs/ECOFFs for Detection of Resistance in Prevalent and Three Nonprevalent <i>Candida</i> spp. to Triazoles and Amphotericin B and Aspergillus spp. to Caspofungin: Further Assessment of Modal Variability. Antimicrobial Agents and Chemotherapy, 2021, 65, e0109321.	3.2	12
119	EUCAST Reference Testing of Rezafungin Susceptibility and Impact of Choice of Plastic Plates. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	11
120	Species distribution and antifungal susceptibility profile of Candida isolates from blood and other normally sterile foci from pediatric ICU patients in Tehran, Iran. Medical Mycology, 2019, 58, 201-206.	0.7	11
121	Vertebral infection with Candida albicans failing caspofungin and fluconazole combination therapy but successfully treated with high dose liposomal amphotericin B and flucytosine. Medical Mycology Case Reports, 2014, 6, 6-9.	1.3	10
122	Would you like to purchase a rodent with dermatophytes?. Mycoses, 2019, 62, 584-587.	4.0	10
123	A multicentre study to optimize echinocandin susceptibility testing of Aspergillus species with the EUCAST methodology and a broth microdilution colorimetric method. Journal of Antimicrobial Chemotherapy, 2020, 75, 1799-1806.	3.0	10
124	Dissection of the Activity of Agricultural Fungicides against Clinical Aspergillus Isolates with and without Environmentally and Medically Induced Azole Resistance. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT /Ov	erl s.s k 10	Tf 50 137 Td
125	Association of Fluconazole Pharmacodynamics with Mortality in Patients with Candidemia. Antimicrobial Agents and Chemotherapy, 2009, 53, 2704-2706.	3.2	9
126	Implementation of Isavuconazole in a Fluorescence-Based High-Performance Liquid Chromatography Kit Allowing Simultaneous Detection of All Four Currently Licensed Mold-Active Triazoles. MSphere, 2017, 2, .	2.9	9

#	Article	IF	CITATIONS
127	Introduction of a Comprehensive Diagnostic and Interdisciplinary Management Approach in Haematological Patients with Mucormycosis: A Pre and Post-Intervention Analysis. Journal of Fungi (Basel, Switzerland), 2020, 6, 268.	3.5	9
128	Treatment of candidemia in a nationwide setting: increased survival with primary echinocandin treatment. Infection and Drug Resistance, 2018, Volume 11, 2449-2459.	2.7	8
129	Development and multicentre validation of an agar-based screening method for echinocandin susceptibility testing of Aspergillus species. Journal of Antimicrobial Chemotherapy, 2019, 74, 2247-2254.	3.0	8
130	Pulmonary mucormycosis in the aftermath of critical COVID-19 in an immunocompromised patient: Mind the diagnostic gap. Journal De Mycologie Medicale, 2022, 32, 101228.	1.5	8
131	First report of <i>Candida palmioleophila</i> endogenous endophthalmitis. Acta Ophthalmologica, 2015, 93, e517-8.	1.1	7
132	Recurrent prosthetic valve endocarditis caused by Aspergillus delacroxii (formerly Aspergillus) Tj ETQq0 0 0 rgBT	/Oyerlock	10 ₇ Tf 50 542
133	Invasive pulmonary aspergillosis treatment duration in haematology patients in Europe: An EFISG, IDWPâ€EBMT, EORTCâ€IDG and SEIFEM survey. Mycoses, 2020, 63, 420-429.	4.0	7
134	Does One Voriconazole Breakpoint Suit All Candida Species?. Journal of Clinical Microbiology, 2007, 45, 2093-2094.	3.9	6
135	Multicenter Comparison of the ISO Standard 20776-1 and the Serial 2-Fold Dilution Procedures To Dilute Hydrophilic and Hydrophobic Antifungal Agents for Susceptibility Testing. Journal of Clinical Microbiology, 2010, 48, 1918-1920.	3.9	6
136	In-vitro pharmacokinetic/pharmacodynamic model data suggest a potential role of new formulations of posaconazole against Candida krusei but not Candida glabrata infections. International Journal of Antimicrobial Agents, 2021, 57, 106291.	2.5	6
137	ISO standard 20776-1 or serial 2-fold dilution for antifungal susceptibility plate preparation: that is the question!. Journal of Antimicrobial Chemotherapy, 2021, 76, 1793-1799.	3.0	6
138	Comparative Pharmacodynamics of Echinocandins against Aspergillus fumigatus Using an <i>In Vitro</i> Pharmacokinetic/Pharmacodynamic Model That Correlates with Clinical Response to Caspofungin Therapy: Is There a Place for Dose Optimization?. Antimicrobial Agents and Chemotherapy, 2021, 65,.	3.2	6
139	The Role of New Posaconazole Formulations in the Treatment of Candida albicans Infections: Data from an <i>In Vitro</i> Pharmacokinetic-Pharmacodynamic Model. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	6
140	Comment on: Multicentre validation of a EUCAST method for the antifungal susceptibility testing of microconidia-forming dermatophytes. Journal of Antimicrobial Chemotherapy, 2022, 77, 1209-1210.	3.0	6
141	A Pragmatic Approach to Susceptibility Classification of Yeasts without EUCAST Clinical Breakpoints. Journal of Fungi (Basel, Switzerland), 2022, 8, 141.	3.5	6
142	Candidemia among Hospitalized Pediatric Patients Caused by Several Clonal Lineages of Candida parapsilosis. Journal of Fungi (Basel, Switzerland), 2022, 8, 183.	3.5	6
143	Comparison of Caspofungin MICs by Means of EUCAST Method EDef 7.1 Using Two Different Concentrations of Glucose. Antimicrobial Agents and Chemotherapy, 2010, 54, 3056-3057.	3.2	5
144	Can We Achieve Clinical Breakpoints for the Triazoles in Aspergillosis?. Current Fungal Infection Reports, 2011, 5, 128-134.	2.6	5

#	Article	IF	CITATIONS
145	The State-of-the-Art Mycology Laboratory: Visions of the Future. Current Fungal Infection Reports, 2015, 9, 37-51.	2.6	5
146	Photodynamic therapy: A treatment option for terbinafine resistant Trichophyton species. Photodiagnosis and Photodynamic Therapy, 2021, 33, 102169.	2.6	5
147	Disinfection trials with terbinafineâ€susceptible and terbinafineâ€resistant dermatophytes. Mycoses, 2022, 65, 741-746.	4.0	5
148	Voriconazole efficacy against Candida glabrata and Candida krusei: preclinical data using a validated in vitro pharmacokinetic/pharmacodynamic model. Journal of Antimicrobial Chemotherapy, 2019, 75, 140-148.	3.0	4
149	Toward Harmonization of Voriconazole CLSI and EUCAST Breakpoints for Candida albicans Using a Validated In Vitro Pharmacokinetic/Pharmacodynamic Model. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	4
150	Revision of EUCAST breakpoints: consequences for susceptibility of contemporary Danish mould isolates to isavuconazole and comparators. Journal of Antimicrobial Chemotherapy, 2020, 75, 2573-2581.	3.0	3
151	Candidemia Candida albicans clusters have higher tendency to form biofilms than singleton genotypesâ€. Medical Mycology, 2020, 58, 887-895.	0.7	2
152	Aspergillus flavus Infections in Children With Leukemia Despite Liposomal Amphotericin-B Prophylaxis. Pediatric Infectious Disease Journal, 2021, 40, 749-752.	2.0	2
153	Two Cases of Proximal Subungual Onychomycosis Caused by Trichophyton rubrum in HIV-negative Patients During Treatment with TNF-1± Inhibitors Combined with Methotrexate. Acta Dermatovenerologica Croatica, 2018, 26, 304-306.	0.1	2
154	Early phenotypic detection of fluconazole- and anidulafungin-resistant <i>Candida glabrata</i> isolates. Journal of Antimicrobial Chemotherapy, 2022, 77, 1655-1661.	3.0	2
155	Intensive Care Antifungal Stewardship Programme Based on T2Candida PCR and Candida Mannan Antigen: A Prospective Study. Journal of Fungi (Basel, Switzerland), 2021, 7, 1044.	3 . 5	2
156	OUP accepted manuscript. Journal of Antimicrobial Chemotherapy, 2022, , .	3.0	1
157	Lack of relationship between genotype and virulence in Candida species. Revista Iberoamericana De Micologia, 2021, 38, 9-11.	0.9	O