Nathalie Janel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4668076/publications.pdf Version: 2024-02-01

Νλτηλιίε Ιλνεί

#	Article	IF	CITATIONS
1	Homocysteine Metabolism Pathway Is Involved in the Control of Glucose Homeostasis: A Cystathionine Beta Synthase Deficiency Study in Mouse. Cells, 2022, 11, 1737.	4.1	5
2	DYRK1A and Activity-Dependent Neuroprotective Protein Comparative Diagnosis Interest in Cerebrospinal Fluid and Plasma in the Context of Alzheimer-Related Cognitive Impairment in Down Syndrome Patients. Biomedicines, 2022, 10, 1380.	3.2	2
3	DYRK1A Overexpression in Mice Downregulates the Gonadotropic Axis and Disturbs Early Stages of Spermatogenesis. Genes, 2021, 12, 1800.	2.4	1
4	Ethanol-Induced Changes in Brain of Transgenic Mice Overexpressing DYRK1A. Molecular Neurobiology, 2020, 57, 3195-3205.	4.0	3
5	Molecular Rescue of Dyrk1A Overexpression Alterations in Mice with Fontup® Dietary Supplement: Role of Green Tea Catechins. International Journal of Molecular Sciences, 2020, 21, 1404.	4.1	16
6	LPS-Induced Inflammation Abolishes the Effect of DYRK1A on IkB Stability in the Brain of Mice. Molecular Neurobiology, 2019, 56, 963-975.	4.0	17
7	Deciphering the Link Between Hyperhomocysteinemia and Ceramide Metabolism in Alzheimer-Type Neurodegeneration. Frontiers in Neurology, 2019, 10, 807.	2.4	22
8	Hypothesis and Theory: Circulating Alzheimer's-Related Biomarkers in Type 2 Diabetes. Insight From the Goto-Kakizaki Rat. Frontiers in Neurology, 2019, 10, 649.	2.4	14
9	Inhibition of DYRK1A proteolysis modifies its kinase specificity and rescues Alzheimer phenotype in APP/PS1 mice. Acta Neuropathologica Communications, 2019, 7, 46.	5.2	31
10	Prenatal treatment with EGCG enriched green tea extract rescues GAD67 related developmental and cognitive defects in Down syndrome mouse models. Scientific Reports, 2019, 9, 3914.	3.3	35
11	Overexpression of the DYRK1A Gene (Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A) Induces Alterations of the Serotoninergic and Dopaminergic Processing in Murine Brain Tissues. Molecular Neurobiology, 2018, 55, 3822-3831.	4.0	17
12	Homocysteine-lowering gene therapy rescues signaling pathways in brain of mice with intermediate hyperhomocysteinemia. Redox Biology, 2018, 19, 200-209.	9.0	18
13	Effect of lyophilized prune extract on hyperhomocysteinemia in mice. Food and Chemical Toxicology, 2017, 103, 183-187.	3.6	5
14	Hepatoprotective effects of lycopene on liver enzymes involved in methionine and xenobiotic metabolism in hyperhomocysteinemic rats. Food and Function, 2016, 7, 2862-2869.	4.6	20
15	Effect of cadmium administration in hyperhomocysteinemic mice due to cystathionine beta synthase deficiency. Experimental and Toxicologic Pathology, 2016, 68, 365-370.	2.1	3
16	Safety and efficacy of cognitive training plus epigallocatechin-3-gallate in young adults with Down's syndrome (TESDAD): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Neurology, The, 2016, 15, 801-810.	10.2	227
17	Impact of Dyrk1A level on alcohol metabolism. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1495-1503.	3.8	5
18	Pharmacological correction of excitation/inhibition imbalance in Down syndrome mouse models. Frontiers in Behavioral Neuroscience, 2015, 9, 267.	2.0	57

NATHALIE JANEL

#	Article	IF	CITATIONS
19	Corrective effects of hepatotoxicity by hepatic Dyrk1a gene delivery in mice with intermediate hyperhomocysteinemia. Molecular Genetics and Metabolism Reports, 2015, 2, 51-60.	1.1	5
20	The iron component of particulate matter is antiapoptotic: A clue to the development of lung cancer after exposure to atmospheric pollutants?. Biochimie, 2015, 118, 195-206.	2.6	10
21	Molecular Rescue of DYRK1A Overexpression in Cystathionine Beta Synthase-Deficient Mouse Brain by Enriched Environment Combined with Voluntary Exercise. Journal of Molecular Neuroscience, 2015, 55, 318-323.	2.3	6
22	Optimisation of microwaveâ€assisted extraction of prune (<i><scp>P</scp>runus domestica</i>) antioxidants by response surface methodology. International Journal of Food Science and Technology, 2014, 49, 2158-2166.	2.7	16
23	Epigallocatechinâ€3â€gallate, a DYRK1A inhibitor, rescues cognitive deficits in <scp>D</scp> own syndrome mouse models and in humans. Molecular Nutrition and Food Research, 2014, 58, 278-288.	3.3	234
24	Excitation/inhibition balance and learning are modified by Dyrk1a gene dosage. Neurobiology of Disease, 2014, 69, 65-75.	4.4	104
25	A high-performance liquid chromatography assay for Dyrk1a, a Down syndrome-associated kinase. Analytical Biochemistry, 2014, 449, 172-178.	2.4	15
26	Protection and Reversal of Hepatic Fibrosis by Polyphenols. , 2014, , 665-679.		9
27	One-carbon cycle alterations induced by Dyrk1a dosage. Molecular Genetics and Metabolism Reports, 2014, 1, 487-492.	1.1	8
28	Mice Deficient in Cystathionine Beta Synthase Display Increased Dyrk1A and SAHH Activities in Brain. Journal of Molecular Neuroscience, 2013, 50, 1-6.	2.3	17
29	Effect of catechin/epicatechin dietary intake on endothelial dysfunction biomarkers and proinflammatory cytokines in aorta of hyperhomocysteinemic mice. European Journal of Nutrition, 2013, 52, 1243-1250.	3.9	29
30	Dyrk1A, a Serine/Threonine Kinase, is Involved in ERK and Akt Activation in the Brain of Hyperhomocysteinemic Mice. Molecular Neurobiology, 2013, 47, 105-116.	4.0	35
31	Hepatocyte-specific Dyrk1a gene transfer rescues plasma apolipoprotein A-I levels and aortic Akt/GSK3 pathways in hyperhomocysteinemic mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 718-728.	3.8	16
32	DYRK1A overexpression decreases plasma lecithin:cholesterol acyltransferase activity and apolipoprotein A-I levels. Molecular Genetics and Metabolism, 2013, 110, 371-377.	1.1	5
33	Plasma nitrate levels are increased in adult Down syndrome patients. Biomarkers, 2013, 18, 373-374.	1.9	2
34	Dyrk1a activates antioxidant NQO1 expression through an ERK1/2–Nrf2 dependent mechanism. Molecular Genetics and Metabolism, 2012, 105, 484-488.	1.1	14
35	BDNF and DYRK1A Are Variable and Inversely Correlated in Lymphoblastoid Cell Lines from Down Syndrome Patients. Molecular Neurobiology, 2012, 46, 297-303.	4.0	15
36	Effect of red wine polyphenol dietary supplementation on two phase II enzymes in liver of hyperhomocysteinemic mice. Food and Chemical Toxicology, 2011, 49, 1764-1769.	3.6	14

NATHALIE JANEL

#	Article	IF	CITATIONS
37	Early reduction of circulating homocysteine levels in Goto–Kakizaki rat, a spontaneous nonobese model of type 2 diabetes. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 699-702.	3.8	12
38	Protection and reversal of hepatic fibrosis by red wine polyphenols in hyperhomocysteinemic mice. Journal of Nutritional Biochemistry, 2011, 22, 856-864.	4.2	14
39	Myocardial fibrosis and TGFB expression in hyperhomocysteinemic rats. Molecular and Cellular Biochemistry, 2011, 347, 63-70.	3.1	27
40	Hyperhomocysteinemia-induced Dyrk1a downregulation results in cardiomyocyte hypertrophy in rats. International Journal of Cardiology, 2010, 145, 306-307.	1.7	8
41	Effects of red wine polyphenolic compounds on paraoxonase-1 and lectin-like oxidized low-density lipoprotein receptor-1 in hyperhomocysteinemic mice. Journal of Nutritional Biochemistry, 2009, 20, 586-596.	4.2	52
42	Effect of hyperhomocysteinemia on the protein kinase DYRK1A in liver of mice. Biochemical and Biophysical Research Communications, 2009, 378, 673-677.	2.1	29
43	Calpain activation is required for homocysteine-mediated hepatic degradation of inhibitor Ikappa B alpha. Molecular Genetics and Metabolism, 2009, 97, 114-120.	1.1	15
44	DYRK1A, a Novel Determinant of the Methionine-Homocysteine Cycle in Different Mouse Models Overexpressing this Down-Syndrome-Associated Kinase. PLoS ONE, 2009, 4, e7540.	2.5	50
45	Cystathionine beta synthase deficiency induces catalase-mediated hydrogen peroxide detoxification in mice liver. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2008, 1782, 482-488.	3.8	12
46	Effects of catechin on homocysteine metabolism in hyperhomocysteinemic mice. Biochemical and Biophysical Research Communications, 2007, 355, 221-227.	2.1	26
47	Hyperhomocysteinemia due to cystathionine beta synthase deficiency induces dysregulation of genes involved in hepatic lipid homeostasis in mice. Journal of Hepatology, 2007, 46, 151-159.	3.7	104
48	Mice lacking cystathionine beta synthase have lung fibrosis and air space enlargement. Experimental and Molecular Pathology, 2007, 83, 249-253.	2.1	28
49	Thiol compounds metabolism in mice, rats and humans: Comparative study and potential explanation of rodents protection against vascular diseases. Clinica Chimica Acta, 2006, 372, 140-146.	1.1	25
50	Inhibition of Extracellular Signal–Regulated Kinase in Liver of Hyperhomocysteinemic Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, e126-7.	2.4	5
51	Homocysteine is not detected in normal human vessel walls. Atherosclerosis, 2005, 179, 211-212.	0.8	2
52	Cystathionine β Synthase Deficiency Promotes Oxidative Stress, Fibrosis, and Steatosis in Mice Liver. Gastroenterology, 2005, 128, 1405-1415.	1.3	163
53	Mouse liver paraoxonase-1 gene expression is downregulated in hyperhomocysteinemia. Thrombosis and Haemostasis, 2004, 92, 221-222.	3.4	21
54	The neuronal SAPK/JNK pathway is altered in a murine model of hyperhomocysteinemia. Journal of Neurochemistry, 2004, 89, 33-43.	3.9	19

NATHALIE JANEL

#	Article	IF	CITATIONS
55	Hyperkeratosis in cystathionine beta synthase-deficient mice: An animal model of hyperhomocysteinemia. The Anatomical Record, 2004, 280A, 1072-1076.	1.8	26
56	Mouse liver paraoxonase-1 gene expression is downregulated in hyperhomocysteinemia. Thrombosis and Haemostasis, 2004, 92, 221-2.	3.4	4
57	Altered Gene Expression in Liver from a Murine Model of Hyperhomocysteinemia. Journal of Biological Chemistry, 2003, 278, 31504-31511.	3.4	53
58	Elevated plasma von Willebrand factor in a murine model of severe hyperhomocysteinemia. Thrombosis and Haemostasis, 2003, 90, 362-363.	3.4	9