
Jing Yu ä½eً₩

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/466789/publications.pdf Version: 2024-02-01

ΙΝΟΥΠΧ1/2™έ

#	Article	IF	CITATIONS
1	Tensile performance of sustainable Strain-Hardening Cementitious Composites with hybrid PVA and recycled PET fibers. Cement and Concrete Research, 2018, 107, 110-123.	11.0	185
2	Discontinuous micro-fibers as intrinsic reinforcement for ductile Engineered Cementitious Composites (ECC). Composites Part B: Engineering, 2020, 184, 107741.	12.0	162
3	Mechanical properties of green structural concrete with ultrahigh-volume fly ash. Construction and Building Materials, 2017, 147, 510-518.	7.2	152
4	Seawater sea-sand engineered/strain-hardening cementitious composites (ECC/SHCC): Assessment and modeling of crack characteristics. Cement and Concrete Research, 2021, 140, 106292.	11.0	135
5	Strength Improvement of Strain-Hardening Cementitious Composites with Ultrahigh-Volume Fly Ash. Journal of Materials in Civil Engineering, 2017, 29, .	2.9	97
6	Use of high strength Strain-Hardening Cementitious Composites for flexural repair of concrete structures with significant steel corrosion. Construction and Building Materials, 2018, 167, 325-337.	7.2	94
7	Feasibility of using ultrahigh-volume limestone-calcined clay blend to develop sustainable medium-strength Engineered Cementitious Composites (ECC). Journal of Cleaner Production, 2020, 262, 121343.	9.3	92
8	Seawater sea-sand Engineered Cementitious Composites (SS-ECC) for marine and coastal applications. Composites Communications, 2020, 20, 100353.	6.3	90
9	High-strength seawater sea-sand Engineered Cementitious Composites (SS-ECC): Mechanical performance and probabilistic modeling. Cement and Concrete Composites, 2020, 114, 103740.	10.7	85
10	Compressive strength and environmental impact of sustainable blended cement with high-dosage Limestone and Calcined Clay (LC2). Journal of Cleaner Production, 2021, 278, 123616.	9.3	82
11	Effect of morphological parameters of natural sand on mechanical properties of engineered cementitious composites. Cement and Concrete Composites, 2019, 100, 108-119.	10.7	80
12	Matrix design for waterproof Engineered Cementitious Composites (ECCs). Construction and Building Materials, 2017, 139, 438-446.	7.2	79
13	Mechanical performance of Strain-Hardening Cementitious Composites (SHCC) with hybrid polyvinyl alcohol and steel fibers. Composite Structures, 2019, 226, 111198.	5.8	79
14	Recycling polyethylene terephthalate wastes as short fibers in Strain-Hardening Cementitious Composites (SHCC). Journal of Hazardous Materials, 2018, 357, 40-52.	12.4	69
15	Tensile performance and impact resistance of Strain Hardening Cementitious Composites (SHCC) with recycled fibers. Construction and Building Materials, 2018, 171, 566-576.	7.2	62
16	Using nano-silica to improve mechanical and fracture properties of fiber-reinforced high-volume fly ash cement mortar. Construction and Building Materials, 2020, 239, 117853.	7.2	60
17	Hydration and physical characteristics of ultrahigh-volume fly ash-cement systems with low water/binder ratio. Construction and Building Materials, 2018, 161, 509-518.	7.2	57
18	Hydraulic conductivity and self-healing performance of Engineered Cementitious Composites exposed to Acid Mine Drainage. Science of the Total Environment, 2020, 716, 137095.	8.0	49

Jing Yu ä¹⁄₂™é⊷

#	Article	IF	CITATIONS
19	Effect of fiber content on mechanical performance and cracking characteristics of ultra-high-performance seawater sea-sand concrete (UHP-SSC). Advances in Structural Engineering, 2021, 24, 1182-1195.	2.4	49
20	An improved image processing method for assessing multiple cracking development in Strain Hardening Cementitious Composites (SHCC). Cement and Concrete Composites, 2016, 74, 191-200.	10.7	47
21	Corrosion behavior of steel rebar embedded in hybrid CNTs-OH/polyvinyl alcohol modified concrete under accelerated chloride attack. Cement and Concrete Composites, 2019, 100, 120-129.	10.7	44
22	Experimental determination of crack-bridging constitutive relations of hybrid-fiber Strain-Hardening Cementitious Composites using digital image processing. Construction and Building Materials, 2018, 173, 359-367.	7.2	42
23	Mechanical, environmental and economic performance of sustainable Grade 45 concrete with ultrahigh-volume Limestone-Calcined Clay (LCC). Resources, Conservation and Recycling, 2021, 175, 105846.	10.8	42
24	Micromechanical modeling of crack-bridging relations of hybrid-fiber Strain-Hardening Cementitious Composites considering interaction between different fibers. Construction and Building Materials, 2018, 182, 629-636.	7.2	36
25	Experimental and numerical investigation on bond between steel rebar and high-strength Strain-Hardening Cementitious Composite (SHCC) under direct tension. Cement and Concrete Composites, 2020, 112, 103666.	10.7	32
26	Microstructure and mechanical properties of sustainable cementitious materials with ultra-high substitution level of calcined clay and limestone powder. Construction and Building Materials, 2022, 314, 125416.	7.2	32
27	Mechanical performance of MgO-doped Engineered Cementitious Composites (ECC). Cement and Concrete Composites, 2021, 115, 103857.	10.7	29
28	Effect of curing relative humidity on mechanical properties of engineered cementitious composites at multiple scales. Construction and Building Materials, 2021, 284, 122834.	7.2	27
29	Very high volume fly ash green concrete for applications in India. Waste Management and Research, 2018, 36, 520-526.	3.9	23
30	Smart Self-Healing and Self-Sensing Cementitious Composites—Recent Developments, Challenges, and Prospects. Advances in Civil Engineering Materials, 2019, 8, 554-578.	0.6	23
31	Tensile performance of 3D-printed Strain-Hardening Cementitious Composites (SHCC) considering material parameters, nozzle size and printing pattern. Cement and Concrete Composites, 2022, 132, 104601.	10.7	18
32	Impact of 3D Printing Direction on Mechanical Performance of Strain-Hardening Cementitious Composite (SHCC). RILEM Bookseries, 2019, , 255-265.	0.4	15
33	Mechanical properties and material characterization of cement mortar incorporating CNT-engineered polyvinyl alcohol latex. Construction and Building Materials, 2022, 345, 128320.	7.2	8
34	Why nominal cracking strength can be lower for later cracks in strain-hardening cementitious composites with multiple cracking?. , 0, , .		5
35	Novel Experimental Method to Determine Crack-Bridging Constitutive Relationship of SHCC Using Digital Image Processing. RILEM Bookseries, 2018, , 55-62.	0.4	4
36	Tensile and Compressive Performance of High-Strength Engineered Cementitious Composites (ECC) with Seawater and Sea-Sand. RILEM Bookseries, 2021, , 1034-1041.	0.4	3

Jing Yu ä¹⁄₂™é⊷

#	Article	IF	CITATIONS
37	Using Limestone Calcined Clay to Improve Tensile Performance and Greenness of High-Tensile Strength Strain-Hardening Cementitious Composites (SHCC). RILEM Bookseries, 2020, , 513-522.	0.4	3
38	Pull-out Response of Single Steel Fiber Embedded in PVA Fiber Reinforced Cementitious Matrix. , 0, , .		2
39	Corrosion-induced cracking of recycled aggregate concrete beams under static load. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 0, , 1-15.	0.8	2
40	Sustainable PVA Fiber-Reinforced Strain-Hardening Cementitious Composites (SHCC) with Ultrahigh-Volume Limestone Calcined Clay. RILEM Bookseries, 2020, , 503-511.	0.4	1
41	Experimental Study on Chloride-Induced Corrosion of Soil Nail with Engineered Cementitious Composites (ECC) Grout. Infrastructures, 2021, 6, 161.	2.8	1
42	Comparison of Strength Activity of Limestone-Calcined Clay and Class F Fly Ash. RILEM Bookseries, 2020, , 481-490.	0.4	0