Jin-Lei Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4667694/publications.pdf

Version: 2024-02-01

		1478505	1588992	
9	122	6	8	
papers	citations	h-index	g-index	
9	9	9	179	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Theoretical insights into the CO/NO oxidation mechanisms on single-atom catalysts anchored H4,4,4-graphyne and H4,4,4-graphyne/graphene sheets. Fuel, 2022, 319, 123810.	6.4	8
2	Nitrogen and boron coordinated single-atom catalysts for low-temperature CO/NO oxidations. Journal of Materials Chemistry A, 2021, 9, 15329-15345.	10.3	26
3	Highly efficient catalytic properties of Sc and Fe single atoms stabilized on a honeycomb borophene/Al(111) heterostructure <i>via</i> a dual charge transfer effect. Nanoscale, 2021, 13, 5875-5882.	5.6	12
4	Unconventional deformation potential and half-metallicity in zigzag nanoribbons of 2D-Xenes. Physical Chemistry Chemical Physics, 2020, 22, 7294-7299.	2.8	4
5	Strain induced spin-splitting and half-metallicity in antiferromagnetic bilayer silicene under bending. Physical Chemistry Chemical Physics, 2020, 22, 11567-11571.	2.8	6
6	Strain Engineering of a Defect-Free, Single-Layer MoS ₂ Substrate for Highly Efficient Single-Atom Catalysis of CO Oxidation. ACS Applied Materials & Single-Atom Catalysis of CO Oxidation. ACS Applied Materials & Single-Atom Catalysis of CO Oxidation. ACS Applied Materials & Single-Atom Catalysis of CO Oxidation. ACS Applied Materials & Single-Atom Catalysis of CO Oxidation. ACS Applied Materials & Single-Atom Catalysis of CO Oxidation. ACS Applied Materials & Single-Atom Catalysis of CO Oxidation. ACS Applied Materials & Single-Atom Catalysis of CO Oxidation. ACS Applied Materials & Single-Atom Catalysis of CO Oxidation. ACS Applied Materials & Single-Atom Catalysis of CO Oxidation. ACS Applied Materials & Single-Atom Catalysis of CO Oxidation. ACS Applied Materials & Single-Atom Catalysis of CO Oxidation.	8.0	33
7	Synergetic effects of strain engineering and substrate defects on generating highly efficient single-atom catalysts for CO oxidation. Journal of Materials Chemistry A, 2019, 7, 9297-9304.	10.3	12
8	Interplay between the spin-selection rule and frontier orbital theory in O $<$ sub $>$ 2 $<$ /sub $>$ activation and CO oxidation by single-atom-sized catalysts on TiO $<$ sub $>$ 2 $<$ /sub $>$ (110). Physical Chemistry Chemical Physics, 2016, 18, 24872-24879.	2.8	20
9	Theoretical study on the adsorption and electronic properties of toxic gas molecules on single-atom Pt-doped B/N-coordinated graphene. New Journal of Chemistry, 0, , .	2.8	1