James M Kurdzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4667589/publications.pdf

Version: 2024-02-01

933264 839398 28 387 10 18 citations g-index h-index papers 28 28 28 271 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Observations of Severe Local Storms and Tornadoes with the Atmospheric Imaging Radar. Bulletin of the American Meteorological Society, 2017, 98, 915-935.	1.7	48
2	Millstone Hill ISR observations of upper atmospheric long-term changes: Height dependency. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	47
3	A Pulse Compression Waveform for Improved-Sensitivity Weather Radar Observations. Journal of Atmospheric and Oceanic Technology, 2014, 31, 2713-2731.	0.5	42
4	High-Temporal Resolution Polarimetric X-Band Doppler Radar Observations of the 20 May 2013 Moore, Oklahoma, Tornado. Monthly Weather Review, 2015, 143, 2711-2735.	0.5	41
5	Optimized NLFM pulse compression waveforms for high-sensitivity radar observations. , $2014, \ldots$		31
6	A brief overview of weather radar technologies and instrumentation. IEEE Instrumentation and Measurement Magazine, 2014, 17, 10-15.	1.2	23
7	Towards the Next Generation Operational Meteorological Radar. Bulletin of the American Meteorological Society, 2021, 102, E1357-E1383.	1.7	21
8	Objective Optimization of Weather Radar Networks for Low-Level Coverage Using a Genetic Algorithm. Journal of Atmospheric and Oceanic Technology, 2012, 29, 807-821.	0.5	17
9	High-Temporal Resolution Observations of the 27 May 2015 Canadian, Texas, Tornado Using the Atmospheric Imaging Radar. Monthly Weather Review, 2019, 147, 873-891.	0.5	17
10	Analysis of the 16 May 2015 Tipton, Oklahoma, EF-3 Tornado at High Spatiotemporal Resolution Using the Atmospheric Imaging Radar. Monthly Weather Review, 2018, 146, 2103-2124.	0.5	14
11	Weather Radar Network Benefit Model for Tornadoes. Journal of Applied Meteorology and Climatology, 2019, 58, 971-987.	0.6	14
12	A Neural Network Approach for Waveform Generation and Selection with Multi-Mission Radar. , 2019, , .		9
13	An Ultra-Fast Scan C-band Polarimetric Atmospheric Imaging Radar (PAIR). , 2019, , .		9
14	Mobile Radar Observations of the Evolving Debris Field Compared with a Damage Survey of the Shawnee, Oklahoma, Tornado of 19 May 2013. Monthly Weather Review, 2020, 148, 1779-1803.	0.5	7
15	On the use of genetic algorithms for optimization of a multi-band, Multi-Mission radar network. , 2011, , .		6
16	Polarimetric Observations of Chaff Using the WSR-88D Network. Journal of Applied Meteorology and Climatology, 2018, 57, 1063-1081.	0.6	6
17	Weather Radar Network Benefit Model for Flash Flood Casualty Reduction. Journal of Applied Meteorology and Climatology, 2020, 59, 589-604.	0.6	6
18	Weather Radar Network Benefit Model for Nontornadic Thunderstorm Wind Casualty Cost Reduction. Weather, Climate, and Society, 2020, 12, 789-804.	0.5	5

#	Article	IF	CITATIONS
19	Observations of a Cold Front at High Spatiotemporal Resolution Using an X-Band Phased Array Imaging Radar. Atmosphere, 2017, 8, 30.	1.0	4
20	Analysis of Debris Signature Characteristics and Evolution in the 24 May 2016 Dodge City, Kansas, Tornadoes. Monthly Weather Review, 2020, 148, 5063-5086.	0.5	4
21	Geospatial QPE Accuracy Dependence on Weather Radar Network Configurations. Journal of Applied Meteorology and Climatology, 2020, 59, 1773-1792.	0.6	4
22	Quantification of radar QPE performance based on SENSR network design possibilities. , 2018, , .		3
23	The WSR-88D Inanimate Hydrometeor Class. Journal of Applied Meteorology and Climatology, 2020, 59, 841-858.	0.6	3
24	Impact of WSR-88D Intra-Volume Low-Level Scans on Severe Weather Warning Performance. Weather and Forecasting, 2022, 37, 1169-1189.	0.5	3
25	Adaptive waveform design for multi-sector array isolation. , 2015, , .		2
26	Overview of a Decade of Field Experiments with the Atmospheric Imaging Radar., 2022,,.		1
27	Meteorological data results from the Atmospheric Imaging Radar. , 2015, , .		0
28	Ground-Based Radar Technologies for Tornado Observations. Springer Remote Sensing/photogrammetry, 2018, , 65-112.	0.4	0