Hannah L Turner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4667578/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7348-E7357.	3.3	944
2	Pre-fusion structure of a human coronavirus spike protein. Nature, 2016, 531, 118-121.	13.7	623
3	Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis. Scientific Reports, 2018, 8, 15701.	1.6	408
4	Structural analysis of full-length SARS-CoV-2 spike protein from an advanced vaccine candidate. Science, 2020, 370, 1089-1094.	6.0	290
5	Isolation of potent neutralizing antibodies from a survivor of the 2014 Ebola virus outbreak. Science, 2016, 351, 1078-1083.	6.0	194
6	A Site of Vulnerability on the Influenza Virus Hemagglutinin Head Domain Trimer Interface. Cell, 2019, 177, 1136-1152.e18.	13.5	177
7	Electron-Microscopy-Based Epitope Mapping Defines Specificities of Polyclonal Antibodies Elicited during HIV-1 BG505 Envelope Trimer Immunization. Immunity, 2018, 49, 288-300.e8.	6.6	175
8	Systematic Analysis of Monoclonal Antibodies against Ebola Virus GP Defines Features that Contribute to Protection. Cell, 2018, 174, 938-952.e13.	13.5	173
9	Engineered immunogen binding to alum adjuvant enhances humoral immunity. Nature Medicine, 2020, 26, 430-440.	15.2	172
10	Universal protection against influenza infection by a multidomain antibody to influenza hemagglutinin. Science, 2018, 362, 598-602.	6.0	170
11	Cross-Reactive and Potent Neutralizing Antibody Responses in Human Survivors of Natural Ebolavirus Infection. Cell, 2016, 164, 392-405.	13.5	160
12	Two-component spike nanoparticle vaccine protects macaques from SARS-CoV-2 infection. Cell, 2021, 184, 1188-1200.e19.	13.5	154
13	Development of Clinical-Stage Human Monoclonal Antibodies That Treat Advanced Ebola Virus Disease in Nonhuman Primates. Journal of Infectious Diseases, 2018, 218, S612-S626.	1.9	146
14	Antibodies from a Human Survivor Define Sites of Vulnerability for Broad Protection against Ebolaviruses. Cell, 2017, 169, 878-890.e15.	13.5	145
15	Vaccination with Glycan-Modified HIV NFL Envelope Trimer-Liposomes Elicits Broadly Neutralizing Antibodies to Multiple Sites of Vulnerability. Immunity, 2019, 51, 915-929.e7.	6.6	111
16	Immunization-Elicited Broadly Protective Antibody Reveals Ebolavirus Fusion Loop as a Site of Vulnerability. Cell, 2017, 169, 891-904.e15.	13.5	103
17	Structures of Ebola virus CP and sCP in complex with therapeutic antibodies. Nature Microbiology, 2016, 1, 16128.	5.9	92
18	Mapping Polyclonal Antibody Responses in Non-human Primates Vaccinated with HIV Env Trimer Subunit Vaccines. Cell Reports, 2020, 30, 3755-3765.e7.	2.9	81

Hannah L Turner

#	Article	IF	CITATIONS
19	Antibody Treatment of Ebola and Sudan Virus Infection via a Uniquely Exposed Epitope within the Glycoprotein Receptor-Binding Site. Cell Reports, 2016, 15, 1514-1526.	2.9	80
20	Glycosylation of Human IgA Directly Inhibits Influenza A and Other Sialic-Acid-Binding Viruses. Cell Reports, 2018, 23, 90-99.	2.9	80
21	Analysis of a Therapeutic Antibody Cocktail Reveals Determinants for Cooperative and Broad Ebolavirus Neutralization. Immunity, 2020, 52, 388-403.e12.	6.6	71
22	Cooperativity Enables Non-neutralizing Antibodies to Neutralize Ebolavirus. Cell Reports, 2017, 19, 413-424.	2.9	66
23	Rational design of a trispecific antibody targeting the HIV-1 Env with elevated anti-viral activity. Nature Communications, 2018, 9, 877.	5.8	65
24	Antibody-dependent enhancement of influenza disease promoted by increase in hemagglutinin stem flexibility and virus fusion kinetics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15194-15199.	3.3	65
25	Structural Definition of a Neutralization-Sensitive Epitope on the MERS-CoV S1-NTD. Cell Reports, 2019, 28, 3395-3405.e6.	2.9	63
26	Multifunctional Pan-ebolavirus Antibody Recognizes a Site of Broad Vulnerability on the Ebolavirus Glycoprotein. Immunity, 2018, 49, 363-374.e10.	6.6	61
27	Autologous Antibody Responses to an HIV Envelope Glycan Hole Are Not Easily Broadened in Rabbits. Journal of Virology, 2020, 94, .	1.5	57
28	In vitro evolution of an influenza broadly neutralizing antibody is modulated by hemagglutinin receptor specificity. Nature Communications, 2017, 8, 15371.	5.8	55
29	A natural mutation between SARS-CoV-2 and SARS-CoV determines neutralization by a cross-reactive antibody. PLoS Pathogens, 2020, 16, e1009089.	2.1	55
30	Structural and functional evaluation of de novo-designed, two-component nanoparticle carriers for HIV Env trimer immunogens. PLoS Pathogens, 2020, 16, e1008665.	2.1	52
31	Structural Basis of Protection against H7N9 Influenza Virus by Human Anti-N9 Neuraminidase Antibodies. Cell Host and Microbe, 2019, 26, 729-738.e4.	5.1	51
32	Influenza H7N9 Virus Neuraminidase-Specific Human Monoclonal Antibodies Inhibit Viral Egress and Protect from Lethal Influenza Infection in Mice. Cell Host and Microbe, 2019, 26, 715-728.e8.	5.1	49
33	Multimerization- and glycosylation-dependent receptor binding of SARS-CoV-2 spike proteins. PLoS Pathogens, 2021, 17, e1009282.	2.1	42
34	Potent anti-influenza H7 human monoclonal antibody induces separation of hemagglutinin receptor-binding head domains. PLoS Biology, 2019, 17, e3000139.	2.6	37
35	Disassembly of HIV envelope glycoprotein trimer immunogens is driven by antibodies elicited via immunization. Science Advances, 2021, 7, .	4.7	37
36	Fluorescent Trimeric Hemagglutinins Reveal Multivalent Receptor Binding Properties. Journal of Molecular Biology, 2019, 431, 842-856.	2.0	36

Hannah L Turner

#	Article	IF	CITATIONS
37	Polyclonal epitope mapping reveals temporal dynamics and diversity of human antibody responses to H5N1 vaccination. Cell Reports, 2021, 34, 108682.	2.9	31
38	Canonical features of human antibodies recognizing the influenza hemagglutinin trimer interface. Journal of Clinical Investigation, 2021, 131, .	3.9	20
39	HIV envelope trimer-elicited autologous neutralizing antibodies bind a region overlapping the N332 glycan supersite. Science Advances, 2020, 6, eaba0512.	4.7	18
40	HIV-1 Cross-Reactive Primary Virus Neutralizing Antibody Response Elicited by Immunization in Nonhuman Primates. Journal of Virology, 2017, 91, .	1.5	15
41	Anti–influenza H7 human antibody targets antigenic site in hemagglutinin head domain interface. Journal of Clinical Investigation, 2020, 130, 4734-4739.	3.9	13
42	Influenza hemagglutinin-specific IgA Fc-effector functionality is restricted to stalk epitopes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	8
43	Drivers of recombinant soluble influenza A virus hemagglutinin and neuraminidase expression in mammalian cells. Protein Science, 2020, 29, 1975-1982.	3.1	6
44	Prominent Neutralizing Antibody Response Targeting the Ebolavirus Glycoprotein Subunit Interface Elicited by Immunization. Journal of Virology, 2021, 95, .	1.5	6
45	Human antibody recognition of H7N9 influenza virus HA following natural infection. JCI Insight, 2021, 6, .	2.3	1
46	Title is missing!. , 2020, 16, e1008665.		0
47	Title is missing!. , 2020, 16, e1008665.		0
48	Title is missing!. , 2020, 16, e1008665.		0
49	Title is missing!. , 2020, 16, e1008665.		0