Francisco J Barrantes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4667521/publications.pdf Version: 2024-02-01

		43973	71532
225	7,619	48	76
papers	citations	h-index	g-index
233	233	233	5009
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A deep learning-based approach to model anomalous diffusion of membrane proteins: the case of the nicotinic acetylcholine receptor. Briefings in Bioinformatics, 2022, 23, .	3.2	3
2	Dendritic spine membrane proteome and its alterations in autistic spectrum disorder. Advances in Protein Chemistry and Structural Biology, 2022, 128, 435-474.	1.0	4
3	COVID-19 and neurological sequelae: Vitamin D as a possible neuroprotective and/or neuroreparative agent. Life Sciences, 2022, 297, 120464.	2.0	14
4	Cholesterol-recognizing amino acid consensus motifs in transmembrane proteins: Comparative analysis of in silico studies and structural data. , 2022, , 127-145.		0
5	Fluorescent probes for microscopy visualization of cholesterol topography and dynamics in membranes. , 2022, , 205-225.		Ο
6	Fluorescence Studies of Nicotinic Acetylcholine Receptor and Its Associated Lipid Milieu: The Influence of Erwin London's Methodological Approaches. Journal of Membrane Biology, 2022, , .	1.0	1
7	The constellation of cholesterol-dependent processes associated with SARS-CoV-2 infection. Progress in Lipid Research, 2022, 87, 101166.	5.3	10
8	Morphological and biochemical repercussions of Toxoplasma gondii infection in a 3D human brain neurospheres model. Brain, Behavior, & Immunity - Health, 2021, 11, 100190.	1.3	6
9	Structural biology of coronavirus ion channels. Acta Crystallographica Section D: Structural Biology, 2021, 77, 391-402.	1.1	8
10	Cholesterol in myasthenia gravis. Archives of Biochemistry and Biophysics, 2021, 701, 108788.	1.4	6
11	The Contribution of Biophysics and Structural Biology to Current Advances in COVID-19. Annual Review of Biophysics, 2021, 50, 493-523.	4.5	12
12	The unfolding palette of COVID-19 multisystemic syndrome and its neurological manifestations. Brain, Behavior, & Immunity - Health, 2021, 14, 100251.	1.3	22
13	Lithium causes differential effects on postsynaptic stability in normal and denervated neuromuscular synapses. Scientific Reports, 2021, 11, 17285.	1.6	2
14	Homomeric and Heteromeric α7 Nicotinic Acetylcholine Receptors in Health and Some Central Nervous System Diseases. Membranes, 2021, 11, 664.	1.4	20
15	The Impact of Apolipoprotein E Allelic Variants on Alzheimer's Disease. , 2021, , 397-418.		1
16	Possible implications of dysregulated nicotinic acetylcholine receptor diffusion and nanocluster formation in myasthenia gravis. Neural Regeneration Research, 2021, 16, 242.	1.6	6
17	Nanoscale interactions between the nicotinic acetylcholine receptor and cholesterol. Biocell, 2021, 45, 1479-1484.	0.4	2
18	Dysregulation of Neuronal Nicotinic Acetylcholine Receptor–Cholesterol Crosstalk in Autism Spectrum Disorder. Frontiers in Molecular Neuroscience, 2021, 14, 744597.	1.4	10

#	Article	IF	CITATIONS
19	Nanoscale Sub-Compartmentalization of the Dendritic Spine Compartment. Biomolecules, 2021, 11, 1697.	1.8	6
20	Fluorescence sensors for imaging membrane lipid domains and cholesterol. Current Topics in Membranes, 2021, 88, 257-314.	0.5	7
21	Antibodyâ€induced crosslinking and cholesterolâ€sensitive, anomalous diffusion of nicotinic acetylcholine receptors. Journal of Neurochemistry, 2020, 152, 663-674.	2.1	15
22	While We Wait for a Vaccine Against SARS-CoV-2, Why Not Think About Available Drugs?. Frontiers in Physiology, 2020, 11, 820.	1.3	13
23	Lovastatin Differentially Regulates α7 and α4 Neuronal Nicotinic Acetylcholine Receptor Levels in Rat Hippocampal Neurons. Molecules, 2020, 25, 4838.	1.7	10
24	Central Nervous System Targets and Routes for SARS-CoV-2: Current Views and New Hypotheses. ACS Chemical Neuroscience, 2020, 11, 2793-2803.	1.7	46
25	Nanoscopy in the Neurosciences. Microscopy and Microanalysis, 2020, 26, 127-128.	0.2	0
26	Application of Artificial Intelligence Strategies to the Analysis of Neurotransmitter Receptor Dynamics in Living Cells. Microscopy and Microanalysis, 2020, 26, 17-18.	0.2	0
27	Pleiotropic effects of statins on brain cells. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183340.	1.4	29
28	The role of nicotinic cholinergic neurotransmission in delusional thinking. NPJ Schizophrenia, 2020, 6, 16.	2.0	31
29	Cholesterol-Recognition Motifs in Membrane Proteins. Advances in Experimental Medicine and Biology, 2019, 1135, 3-25.	0.8	67
30	Autoimmune Attack of the Neuromuscular Junction in Myasthenia Gravis: Nicotinic Acetylcholine Receptors and Other Targets. ACS Chemical Neuroscience, 2019, 10, 2186-2194.	1.7	27
31	Damage and repair of the axolemmal membrane: From neural development to axonal trauma and restoration. Current Topics in Membranes, 2019, 84, 169-185.	0.5	3
32	Genetic Factors Influencing the Development and Treatment of Cognitive Impairment and Psychosis in Parkinson's Disease. , 2019, , 359-370.		0
33	Anandamide Revisited: How Cholesterol and Ceramides Control Receptor-Dependent and Receptor-Independent Signal Transmission Pathways of a Lipid Neurotransmitter. Biomolecules, 2018, 8, 31.	1.8	37
34	Cholesterol modulates acetylcholine receptor diffusion by tuning confinement sojourns and nanocluster stability. Scientific Reports, 2018, 8, 11974.	1.6	28
35	How membrane lipids control the 3D structure and function of receptors. AIMS Biophysics, 2018, 5, 22-35.	0.3	6
36	Transdisciplinary Assistance and Translational Research Strategies to Improve the Quality of Life of Older Adults at Early Stages of Alzheimer Disease. Psychology and Behavioral Science International Journal, 2018, 9, .	0.0	1

#	Article	IF	CITATIONS
37	Normal development of spinal axons in early embryo stages and posterior locomotor function is independent of GALâ€1. Journal of Comparative Neurology, 2017, 525, 2861-2875.	0.9	3
38	Relevance of CARC and CRAC Cholesterol-Recognition Motifs in the Nicotinic Acetylcholine Receptor and Other Membrane-Bound Receptors. Current Topics in Membranes, 2017, 80, 3-23.	0.5	56
39	Spatiotemporal Dynamics of Nicotinic Acetylcholine Receptors and Lipid Platforms. Springer Series in Biophysics, 2017, , 195-217.	0.4	2
40	Neuropsychiatric Symptoms Related to Cholinergic Deficits in Parkinson's Disease. , 2017, , 375-388.		1
41	Cholesterol and nicotinic acetylcholine receptor: An intimate nanometer-scale spatialÂrelationship spanning the billion yearÂtime-scale. Biomedical Spectroscopy and Imaging, 2016, 5, S67-S86.	1.2	1
42	Fatty Acid Regulation of Voltage- and Ligand-Gated Ion Channel Function. Frontiers in Physiology, 2016, 7, 573.	1.3	40
43	A mirror code for protein-cholesterol interactions in the two leaflets of biological membranes. Scientific Reports, 2016, 6, 21907.	1.6	105
44	Deficits in cholinergic neurotransmission and their clinical correlates in Parkinson's disease. Npj Parkinson's Disease, 2016, 2, 16001.	2.5	143
45	From hopanoids to cholesterol: Molecular clocks of pentameric ligand-gated ion channels. Progress in Lipid Research, 2016, 63, 1-13.	5.3	31
46	Gregorio Weber's Roots in Argentina. Springer Series on Fluorescence, 2016, , 17-40.	0.8	0
47	The lipid habitats of neurotransmitter receptors in brain. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2662-2670.	1.4	54
48	Pharmacotherapies for Parkinson's disease symptoms related to cholinergic degeneration. Expert Opinion on Pharmacotherapy, 2016, 17, 2405-2415.	0.9	21
49	Single-Molecule Localization Super-Resolution Microscopy of Synaptic Proteins. Springer Protocols, 2016, , 157-198.	0.1	0
50	Molecular mechanisms of protein-cholesterol interactions in plasma membranes: Functional distinction between topological (tilted) and consensus (CARC/CRAC) domains. Chemistry and Physics of Lipids, 2016, 199, 52-60.	1.5	73
51	Transbilayer asymmetry and sphingomyelin composition modulate the preferential membrane partitioning of the nicotinic acetylcholine receptor in Lo domains. Archives of Biochemistry and Biophysics, 2016, 591, 76-86.	1.4	33
52	Diacylglycerol levels modulate the cellular distribution of the nicotinic acetylcholine receptor. International Journal of Biochemistry and Cell Biology, 2016, 74, 1-11.	1.2	1
53	Nicotinic α4 Receptor-Mediated Cholinergic Influences on Food Intake and Activity Patterns in Hypothalamic Circuits. PLoS ONE, 2015, 10, e0133327.	1.1	15
54	Phylogenetic conservation of protein–lipid motifs in pentameric ligand-gated ion channels. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1796-1805.	1.4	51

#	Article	IF	CITATIONS
55	Prenatal restraint stress decreases the expression of alpha-7 nicotinic receptor in the brain of adult rat offspring. Stress, 2015, 18, 435-445.	0.8	26
56	Organization and Dynamics of Nicotinic Acetylcholine Receptor Nanoclusters at the Cell Surface. Biophysical Journal, 2015, 108, 154a.	0.2	0
57	Functional nicotinic acetylcholine receptor reconstitution in Au(111)-supported thiolipid monolayers. Nanoscale, 2015, 7, 15789-15797.	2.8	3
58	Resistance to Inhibitors of Cholinesterase 3 (Ric-3) Expression Promotes Selective Protein Associations with the Human α7-Nicotinic Acetylcholine Receptor Interactome. PLoS ONE, 2015, 10, e0134409.	1.1	9
59	Transient Cholesterol Effects on Nicotinic Acetylcholine Receptor Cell-Surface Mobility. PLoS ONE, 2014, 9, e100346.	1.1	26
60	Cell-surface translational dynamics of nicotinic acetylcholine receptors. Frontiers in Synaptic Neuroscience, 2014, 6, 25.	1.3	16
61	Recent applications of superresolution microscopy in neurobiology. Current Opinion in Chemical Biology, 2014, 20, 16-21.	2.8	25
62	Targeting Brain α7 Nicotinic Acetylcholine Receptors in Alzheimer's Disease: Rationale and Current Status. CNS Drugs, 2014, 28, 975-987.	2.7	48
63	A Cholesterol Recognition Motif in Human Phospholipid Scramblase 1. Biophysical Journal, 2014, 107, 1383-1392.	0.2	24
64	Corticosterone affects the differentiation of a neuronal cerebral cortex-derived cell line through modulation of the nicotinic acetylcholine receptor. Neuroscience, 2014, 274, 369-382.	1.1	3
65	To be or not to be in Membrane Domains: Transbilayer Asymmetry and Sphingomyelin-Dependent Preferential Partitioning of the Acetylcholine Receptor. Biophysical Journal, 2014, 106, 711a.	0.2	0
66	<scp>STED</scp> microscopy of living cells – new frontiers in membrane and neurobiology. Journal of Neurochemistry, 2013, 126, 203-212.	2.1	62
67	Antibody-Induced Acetylcholine Receptor Clusters Inhabit Liquid-Ordered and Liquid-Disordered Domains. Biophysical Journal, 2013, 105, 1601-1611.	0.2	12
68	Proteomic investigation of human α7-nicotinic acetylcholine receptor signaling mechanisms. Biochemical Pharmacology, 2013, 86, 1227-1228.	2.0	0
69	Synapses tango to the rhythm of Buenos Aires: advances and outlooks, 5th <scp>ISN</scp> special conference †Synapses and dendritic spines in health and disease'. Journal of Neurochemistry, 2013, 126, 145-145.	2.1	0
70	How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Frontiers in Physiology, 2013, 4, 31.	1.3	391
71	Chaperoning α7 neuronal nicotinic acetylcholine receptors. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 718-729.	1.4	34
72	The position of the double bond in monounsaturated free fatty acids is essential for the inhibition of the nicotinic acetylcholine receptor. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2511-2520.	1.4	13

#	Article	IF	CITATIONS
73	A New Putative Cholesterol-Recognition Motif in Transmembrane Proteins. Biophysical Journal, 2012, 102, 117a.	0.2	0
74	α7â€ŧype acetylcholine receptor localization and its modulation by nicotine and cholesterol in vascular endothelial cells. Journal of Cellular Biochemistry, 2011, 112, 3276-3288.	1.2	34
75	Disclosure of cholesterol recognition motifs in transmembrane domains of the human nicotinic acetylcholine receptor. Scientific Reports, 2011, 1, 69.	1.6	201
76	Cholesterol Modulates the Rate and Mechanism of Acetylcholine Receptor Internalization. Journal of Biological Chemistry, 2011, 286, 17122-17132.	1.6	52
77	Statistical Analysis of High-Resolution Light Microscope Images Reveals Effects of Cytoskeleton-Disrupting Drugs on the Membrane Organization of the Nicotinic Acetylcholine Receptor. Journal of Membrane Biology, 2010, 235, 163-175.	1.0	5
78	Cholesterol modulation of nicotinic acetylcholine receptor surface mobility. European Biophysics Journal, 2010, 39, 213-227.	1.2	39
79	Boundary Lipids In The Nicotinic Acetylcholine Receptor Microenvironment. Journal of Molecular Neuroscience, 2010, 40, 87-90.	1.1	31
80	Neuronal nicotinic acetylcholine receptor–cholesterol crosstalk in Alzheimer's disease. FEBS Letters, 2010, 584, 1856-1863.	1.3	49
81	The Anticonvulsive Drug Lamotrigine Blocks Neuronal α4β2 Nicotinic Acetylcholine Receptors. Journal of Pharmacology and Experimental Therapeutics, 2010, 335, 401-408.	1.3	38
82	Partition profile of the nicotinic acetylcholine receptor in lipid domains upon reconstitution. Journal of Lipid Research, 2010, 51, 2629-2641.	2.0	27
83	Structure and Dynamics of Nicotinic Acetylcholine Receptor at the Cell Membrane. Biophysical Journal, 2010, 98, 610a.	0.2	Ο
84	Cholesterol Effects on Nicotinic Acetylcholine Receptor: Cellular Aspects. Sub-Cellular Biochemistry, 2010, 51, 467-487.	1.0	37
85	Ric-3 chaperone-mediated stable cell-surface expression of the neuronal α7 nicotinic acetylcholine receptor in mammalian cells. Acta Pharmacologica Sinica, 2009, 30, 818-827.	2.8	16
86	Sphingolipid/cholesterol regulation of neurotransmitter receptor conformation and function. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 2345-2361.	1.4	208
87	Resolution of complex fluorescence spectra of lipids and nicotinic acetylcholine receptor by multivariate analysis reveals protein-mediated effects on the receptor's immediate lipid microenvironment. PMC Biophysics, 2008, 1, 6.	2.2	2
88	Unbinding of Nicotine from the Acetylcholine Binding Protein:  Steered Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2008, 112, 4087-4093.	1.2	23
89	Ceramides modulate cell-surface acetylcholine receptor levels. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 917-930.	1.4	28
90	A novel agonist effect on the nicotinic acetylcholine receptor exerted by the anticonvulsive drug Lamotrigine. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2395-2404.	1.4	6

#	Article	IF	CITATIONS
91	Modulation of Nicotinic Acetylcholine Receptor Conformational State by Free Fatty Acids and Steroids. Journal of Biological Chemistry, 2008, 283, 21478-21486.	1.6	37
92	Mechanics of Channel Gating of the Nicotinic Acetylcholine Receptor. PLoS Computational Biology, 2008, 4, e19.	1.5	49
93	Nicotinic acetylcholine receptor is internalized via a Rac-dependent, dynamin-independent endocytic pathway. Journal of Cell Biology, 2008, 181, 1179-1193.	2.3	88
94	Wnt-7a Induces Presynaptic Colocalization of Â7-Nicotinic Acetylcholine Receptors and Adenomatous Polyposis Coli in Hippocampal Neurons. Journal of Neuroscience, 2007, 27, 5313-5325.	1.7	101
95	Lamotrigine is an open-channel blocker of the nicotinic acetylcholine receptor. NeuroReport, 2007, 18, 45-50.	0.6	19
96	Nanoscale organization of nicotinic acetylcholine receptors revealed by stimulated emission depletion microscopy. Neuroscience, 2007, 144, 135-143.	1.1	130
97	Cholesterol depletion activates rapid internalization of submicron-sized acetylcholine receptor domains at the cell membrane. Molecular Membrane Biology, 2007, 24, 1-15.	2.0	86
98	Conformation-Sensitive Steroid and Fatty Acid Sites in the Transmembrane Domain of the Nicotinic Acetylcholine Receptorâ€. Biochemistry, 2007, 46, 3503-3512.	1.2	24
99	Charged amino acid motifs flanking each extreme of the αM4 transmembrane domain are involved in assembly and cell-surface targeting of the muscle nicotinic acetylcholine receptor. Journal of Neuroscience Research, 2007, 85, 285-293.	1.3	6
100	Sphingolipids are necessary for nicotinic acetylcholine receptor export in the early secretory pathway. Journal of Neurochemistry, 2007, 101, 1072-1084.	2.1	36
101	Cholesterol effects on nicotinic acetylcholine receptor. Journal of Neurochemistry, 2007, 103, 72-80.	2.1	91
102	Laurdan Studies of Membrane Lipid-Nicotinic Acetylcholine Receptor Protein Interactions. Methods in Molecular Biology, 2007, 400, 531-542.	0.4	4
103	Blocking of the Nicotinic Acetylcholine Receptor Ion Channel by Chlorpromazine, a Noncompetitive Inhibitor:Â A Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2006, 110, 20640-20648.	1.2	18
104	Structure and dynamics of the γM4 transmembrane domain of the acetylcholine receptor in lipid bilayers: insights into receptor assembly and function. Molecular Membrane Biology, 2006, 23, 305-315.	2.0	21
105	Fluorescence and molecular dynamics studies of the acetylcholine receptor γM4 transmembrane peptide in reconstituted systems. Molecular Membrane Biology, 2005, 22, 471-483.	2.0	33
106	Structural and dynamic studies of the γ-M4 trans-membrane domain of the nicotinic acetylcholine receptor. Molecular Membrane Biology, 2005, 22, 485-496.	2.0	17
107	Nicotinic Acetylcholine Receptor Induces Lateral Segregation of Phosphatidic Acid and Phosphatidylcholine in Reconstituted Membranesâ€. Biochemistry, 2005, 44, 398-410.	1.2	24
108	Conformational Dynamics of the Nicotinic Acetylcholine Receptor Channel:  A 35-ns Molecular Dynamics Simulation Study. Journal of the American Chemical Society, 2005, 127, 1291-1299.	6.6	64

#	Article	IF	CITATIONS
109	Structural basis for lipid modulation of nicotinic acetylcholine receptor function. Brain Research Reviews, 2004, 47, 71-95.	9.1	156
110	Metabolic cholesterol depletion hinders cell-surface trafficking of the nicotinic acetylcholine receptor. Neuroscience, 2004, 128, 239-249.	1.1	51
111	Cholesterol Modulates the Organization of the γM4 Transmembrane Domain of the Muscle Nicotinic Acetylcholine Receptor. Biophysical Journal, 2004, 86, 2261-2272.	0.2	46
112	Steroid Structural Requirements for Stabilizing or Disrupting Lipid Domainsâ€. Biochemistry, 2003, 42, 14267-14276.	1.2	77
113	Lipidâ^'Protein Interactions and Effect of Local Anesthetics in Acetylcholine Receptor-Rich Membranes fromTorpedo marmorataElectric Organâ€. Biochemistry, 2003, 42, 9167-9175.	1.2	65
114	Modulation of nicotinic acetylcholine receptor function through the outer and middle rings of transmembrane domains. Current Opinion in Drug Discovery & Development, 2003, 6, 620-32.	1.9	21
115	Lipid matters: nicotinic acetylcholine receptor-lipid interactions (Review). Molecular Membrane Biology, 2002, 19, 277-284.	2.0	47
116	Unique Effects of Different Fatty Acid Species on the Physical Properties of the Torpedo Acetylcholine Receptor Membrane. Journal of Biological Chemistry, 2002, 277, 1249-1254.	1.6	39
117	Identification of threonine 422 in transmembrane domain αM4 of the nicotinic acetylcholine receptor as a possible site of interaction with hydrocortisone. Neuropharmacology, 2002, 43, 65-73.	2.0	20
118	Sphingomyelin composition and physical asymmetries in native acetylcholine receptor-rich membranes. European Biophysics Journal, 2002, 31, 417-427.	1.2	20
119	Search for alpha4 and alpha7 nicotinic acetylcholine receptor markers in a pedigree of benign familial infantile convulsions (BFIC). Neurochemical Research, 2002, 27, 1563-1568.	1.6	0
120	UNESCO Chair of Biophysics and Molecular Neurobiology. Journal of Biomedicine and Biotechnology, 2001, 1, 97-98.	3.0	0
121	Steroids differentially inhibit the nicotinic acetylcholine receptor. NeuroReport, 2001, 12, 227-231.	0.6	23
122	Fluorescence Studies of the Acetylcholine Receptor: Structure and Dynamics in Membranes and Cells. Journal of Fluorescence, 2001, 11, 273-285.	1.3	8
123	Nongenomic effects of steroids on the nicotinic acetylcholine receptor. Kidney International, 2000, 57, 1382-1389.	2.6	22
124	Expression of a neuronal nicotinic acetylcholine receptor in insect and mammalian host cell systems. Neurochemical Research, 2000, 25, 171-180.	1.6	21
125	The neuronal nicotinic acetylcholine receptor in some hereditary epilepsies. Neurochemical Research, 2000, 25, 583-590.	1.6	11
126	Topography of Nicotinic Acetylcholine Receptor Membrane-embedded Domains. Journal of Biological Chemistry, 2000, 275, 37333-37339.	1.6	65

#	Article	IF	CITATIONS
127	Effect of organochlorine insecticides on nicotinic acetylcholine receptor-rich membranes. Neuropharmacology, 2000, 39, 1095-1106.	2.0	11
128	Cells defective in sphingolipids biosynthesis express low amounts of muscle nicotinic acetylcholine receptor. European Journal of Neuroscience, 1999, 11, 1615-1623.	1.2	43
129	Fluorescence Studies of the Nicotinic Acetylcholine Receptor in its Membrane Environment. Bioscience Reports, 1999, 19, 335-344.	1.1	2
130	Inherited and Experimentally Induced Changes in Gating Kinetics of Muscle Nicotinic Acetylcholine Receptor. Journal of Molecular Neuroscience, 1999, 13, 1-16.	1.1	0
131	Disclosure of Discrete Sites for Phospholipid and Sterols at the Proteinâ 'Lipid Interface in Native Acetylcholine Receptor-Rich Membrane. Biochemistry, 1998, 37, 16653-16662.	1.2	79
132	Mutations at Lipid-Exposed Residues of the Acetylcholine Receptor Affect Its Gating Kinetics. Molecular Pharmacology, 1998, 54, 146-153.	1.0	81
133	Molecular Modeling of the Nicotinic Acetylcholine Receptor. , 1998, , 85-108.		3
134	Molecular Pathology of the Nicotinic Acetylcholine Receptor. , 1998, , 175-212.		7
135	Introduction: Structure Meets Function at the Acetylcholine Receptor. , 1998, , 1-10.		0
136	Assigning functions to residues in the acetylcholine receptor channel region (Review). Molecular Membrane Biology, 1997, 14, 167-177.	2.0	12
137	Screening Structural-Functional Relationships of Neuropharmacologically Active Organic Compounds at the Nicotonic Acetylcholine Receptor. Neuropharmacology, 1997, 36, 269-279.	2.0	4
138	Co-distribution of Tropomyosin and α-Actinin With Actin in Psammobatis extenta Electrocytes Brings Out Their Similarity with Muscle Fiber Cytoplasm. Comparative Biochemistry and Physiology A, Comparative Physiology, 1997, 116, 113-118.	0.7	3
139	The acetylcholine receptor ligand-gated channel as a molecular target of disease and therapeutic agents. Neurochemical Research, 1997, 22, 391-400.	1.6	19
140	Apoptosis of Retinal Photoreceptors During Development In Vitro: Protective Effect of Docosahexaenoic Acid. Journal of Neurochemistry, 1997, 69, 504-513.	2.1	110
141	Physical State of the Nicotinic Acetylcholine Receptor Membrane and Modulation of the Receptor Channel by the Lipid Environment. , 1997, , 199-216.		2
142	Physical state of bulk and protein-associated lipid in nicotinic acetylcholine receptor-rich membrane studied by laurdan generalized polarization and fluorescence energy transfer. Biophysical Journal, 1996, 70, 1275-1284.	0.2	81
143	Nicotinic acetylcholine receptor channels are influenced by the physical state of their membrane environment. Biophysical Journal, 1996, 70, 2155-2164.	0.2	54
144	Heterologous retinal cultured neurons and cell adhesion molecules induce clustering of acetylcholine receptors and polynucleation in mouse muscle BC3H-1 clonal cell line. Journal of Neuroscience Research, 1996, 43, 639-651.	1.3	24

#	Article	IF	CITATIONS
145	Modulation of Muscle Nicotinic Acetylcholine Receptors by the Glucocorticoid Hydrocortisone. Journal of Biological Chemistry, 1996, 271, 25835-25841.	1.6	72
146	Docosahexaenoic Acid Is Required for the Survival of Rat Retinal Photoreceptors In Vitro. Journal of Neurochemistry, 1996, 66, 1851-1859.	2.1	99
147	Down-regulation of brain muscarinic cholinergic receptor promoted by diacylglycerols and phorbol ester. Neurochemical Research, 1995, 20, 1225-1231.	1.6	1
148	Preferential Distribution of the Fluorescent Phospholipid Probes NBD-Phosphatidylcholine and Rhodamine-Phosphatidylethanolamine in the Exofacial Leaflet of Acetylcholine Receptor-Rich Membranes from Torpedo marmorata. Biochemistry, 1995, 34, 4846-4855.	1.2	26
149	Ultrastructure of Psammobatis extenta (Rajidae) electrolytes and cytochemical localization of acetylcholinesterase, acetylcholine receptor and F-actin. Biocell, 1995, 19, 113-23.	0.4	4
150	Interaction of merocyanine 540 with nicotinic acetylcholine receptor membranes from Discopyge tschudii electric organ. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1190, 393-401.	1.4	8
151	Effect of chemical modification of extracellular histidyl residues on the channel properties of the nicotinic acetylcholine receptor. Pflugers Archiv European Journal of Physiology, 1993, 423, 365-371.	1.3	7
152	Phospholipid metabolism under muscarinic cholinergic stimulation exhibits brain asymmetry. Neurochemical Research, 1993, 18, 559-564.	1.6	3
153	Asymmetric distribution and down-regulation of the muscarinic acetylcholine receptor in rat cerebral cortex. Neurochemical Research, 1993, 18, 565-572.	1.6	6
154	Gangliosides in acetylcholine receptor-rich membranes fromTorpedo marmorata andDiscopyge tschudii. Neurochemical Research, 1993, 18, 599-603.	1.6	10
155	Hydrocortisone and 11–desoxycortisone modify acetylcholine receptor channel gating. NeuroReport, 1993, 4, 143-146.	0.6	41
156	Structuralâ€functional correlates of the nicotinic acetylcholine receptor and its lipid microenvironment. FASEB Journal, 1993, 7, 1460-1467.	0.2	65
157	Structural and functional crosstalk between acetylcholine receptor and its membrane environment. Molecular Neurobiology, 1992, 6, 463-482.	1.9	9
158	Myogenic differentiation of the muscle clonal cell line BC3H-1 is accompanied by changes in its lipid composition. Lipids, 1992, 27, 669-675.	0.7	12
159	Polyphoshoinositide synthesis and protein phosphorylation in the plasma membrane from full-grown Bufo arenarum oocytes. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1992, 102, 585-590.	0.2	Ο
160	The Nicotinic Acetylcholine Receptor and its Lipid Microenvironment. Jerusalem Symposia on Quantum Chemistry and Biochemistry, 1992, , 185-198.	0.2	11
161	Acetylcholine receptor channel properties are modified by benzyl alcohol. NeuroReport, 1991, 2, 681-684.	0.6	6
162	Changes in channel properties of acetylcholine receptors during the time course of thiol chemical modifications. Pflugers Archiv European Journal of Physiology, 1991, 418, 51-61.	1.3	14

#	Article	IF	CITATIONS
163	Brain asymmetry in phospholipid polar head group metabolism: Parallel in vivo and in vitro studies. Neurochemical Research, 1990, 15, 25-32.	1.6	6
164	Asymmetric distribution of phospholipids in acetylcholine receptor-rich membranes from T. marmorata electric organ. International Journal of Biochemistry & Cell Biology, 1990, 22, 785-789.	0.8	6
165	Association of spin-labeled local anesthetics at the hydrophobic surface of the acetylcholine receptor in native membranes from Torpedo marmorata. Biochemistry, 1990, 29, 8707-8713.	1.2	48
166	Effect of local anaesthetics on steroid-nicotinic acetylcholine receptor interactions in native membranes of Torpedo marmorata electric organ. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1027, 287-294.	1.4	39
167	The Lipid Environment of the Nicotinic Acetylcholine Receptor in Native and Reconstituted Membrane. Critical Reviews in Biochemistry and Molecular Biology, 1989, 24, 437-478.	2.3	53
168	Rapid method for isolation and purification of protoplasts from epidermal tissue ofVicia faba L. leaves. MIRCEN Journal of Applied Microbiology and Biotechnology, 1988, 4, 275-283.	0.3	1
169	Ca2+ and phospholipid-dependent protein kinase activity in rat cerebral hemispheres. Brain Research, 1988, 440, 386-390.	1.1	9
170	Muscle endplate cholinoreceptors. , 1988, 38, 331-385.		7
171	The Acetylcholine Receptor and its Membrane Environment. , 1988, , 147-175.		1
172	Extraction of peripheral proteins is accompanied by selective depletion of certain glycerophospholipid classes and changes in the phosphorylation pattern of acetylcholine-receptor-rich-membrane proteins. Biochemical Journal, 1987, 245, 111-118.	1.7	14
173	Lipid composition of purified transverse tubule membranes isolated from amphibian skeletal muscle. Lipids and Lipid Metabolism, 1987, 921, 398-404.	2.6	12
174	In vitro turnover of oleate and arachidonate in lipids of Discopyge tschudii electrocyte membranes. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1987, 86, 623-627.	0.2	1
175	High levels of phosphorylation in minor phospholipids of Discopyge tschudii electrocyte membranes. Neurochemistry International, 1987, 11, 101-106.	1.9	7
176	Composition of Lipids in Elasmobranch Electric Organ and Acetylcholine Receptor Membranes. Journal of Neurochemistry, 1987, 49, 1333-1340.	2.1	42
177	Lipid Metabolism in Electroplax. Journal of Neurochemistry, 1987, 49, 1341-1347.	2.1	12
178	Asymmetry of Diacylglycerol Metabolism in Rat Cerebral Hemispheres. Journal of Neurochemistry, 1986, 46, 1382-1386.	2.1	18
179	Correlation of the Molecular Structure with Functional Properties of the Acetylcholine Receptor Protein. , 1986, , 385-400.		5
180	Subcellular localization of creatine kinase in Torpedo electrocytes: association with acetylcholine receptor-rich membranes Journal of Cell Biology, 1985, 100, 1063-1072.	2.3	56

#	Article	IF	CITATIONS
181	Mixing liquids in microseconds. Review of Scientific Instruments, 1985, 56, 283-290.	0.6	106
182	Endogenous asymmetry of rat brain lipids and dominance of the right cerebral hemisphere in free fatty acid response to electroconvulsive shock. Brain Research, 1985, 339, 315-321.	1.1	24
183	Isolation and characterization of acetylcholine receptor membrane-associated (nonreceptor) Tj ETQq1 1 0.784314 3024-3034.	4 rgBT /O\ 1.6	verlock 10 23
184	Isolation and characterization of acetylcholine receptor membrane-associated (nonreceptor) Tj ETQq0 0 0 rgBT /C 3024-34.	verlock 1 1.6	0 Tf 50 627 22
185	Conversion of acetylcholine receptor dimers to monomers upon depletion of non-receptor peripheral proteins. Biochimica Et Biophysica Acta - General Subjects, 1984, 798, 374-381.	1.1	12
186	Functional properties of the acetylcholine receptor incorporated in model lipid membranes. Differential effects of chain length and head group of phospholipids on receptor affinity states and receptor-mediated ion translocation Journal of Biological Chemistry, 1984, 259, 9188-9198.	1.6	157
187	Functional properties of the acetylcholine receptor incorporated in model lipid membranes. Differential effects of chain length and head group of phospholipids on receptor affinity states and receptor-mediated ion translocation. Journal of Biological Chemistry, 1984, 259, 9188-98.	1.6	122
188	A membrane-associated creatine kinase (EC 2.7.3.2) identified as an acidic species of the non-receptor, peripheralv-proteins inTorpedoacetylcholine receptor membranes. FEBS Letters, 1983, 152, 270-276.	1.3	24
189	Creatine kinase activity in the Torpedo electrocyte and in the nonreceptor, peripheral v proteins from acetylcholine receptor-rich membranes Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 5440-5444.	3.3	43
190	Recent Developments in the Structure and Function of the Acetylcholine Receptor. International Review of Neurobiology, 1983, 24, 259-341.	0.9	52
191	Oligomeric forms of the membrane-bound acetylcholine receptor disclosed upon extraction of the M(r) 43,000 nonreceptor peptide. Journal of Cell Biology, 1982, 92, 60-68.	2.3	45
192	Effects of lipids on acetylcholine receptor. Essential need of cholesterol for maintenance of agonist-induced state transitions in lipid vesicles. Biochemistry, 1982, 21, 3622-3629.	1.2	186
193	Translational diffusion of acetylcholine receptor (monomeric and dimeric forms) of Torpedo marmorata reconstituted into phospholipid bilayers studied by fluorescence recovery after photobleaching. Biochemistry, 1982, 21, 5750-5755.	1.2	51
194	Effects of periodate oxidation and glycosidases on structural and functional properties of the acetylcholine receptor and the non-receptor, peripheral ν-polypeptide (Mr 43,000). Neurochemistry International, 1982, 4, 289-302.	1.9	11
195	INTERACTIONS OF THE MEMBRANE-BOUND ACETYLCHOLINE RECEPTOR WITH THE NON-RECEPTOR PERIPHERAL v-PEPTIDE. , 1982, , 315-328.		11
196	Direct structural localization of two toxin-recognition sites on an ACh receptor protein. Nature, 1982, 299, 81-84.	13.7	99
197	Dimeric arrangement and structure of the membrane-bound acetylcholine receptor studied by electron microscopy. EMBO Journal, 1982, 1, 541-7.	3.5	9
198	Phospholipid chain immobilization and steriod rotational immobilization in acetylcholine receptor-rich membranes from torpedo marmorata. Biochimica Et Biophysica Acta - Biomembranes, 1981, 645, 97-101.	1.4	83

#	Article	IF	CITATIONS
199	Agonist-activated ionic channels in acetylcholine receptor reconstituted into planar lipid bilayers Proceedings of the National Academy of Sciences of the United States of America, 1981, 78, 3586-3590.	3.3	101
200	Rotational Molecular Dynamics of the Membrane-Bound Acetylcholine Receptor Revealed by Phosphorescene Spectroscopy. FEBS Journal, 1981, 120, 389-397.	0.2	45
201	Structural details of membrane-bound acetylcholine receptor from Tropedo marmorata Proceedings of the National Academy of Sciences of the United States of America, 1980, 77, 952-956.	3.3	74
202	Reconstitution of the acetylcholine receptor-channel system in planar bilayer membranes below lipid phase transition. Biophysics of Structure and Mechanism, 1980, 6, 135-135.	1.9	0
203	Altered physical states of the membrane-bound acetylcholine receptor after affinity labelling. European Journal of Pharmacology, 1980, 65, 49-53.	1.7	1
204	Peptide extraction by alkaline treatment is accompanied by rearrangement of the membrane-bound acetylcholine receptor from torpedo marmorata. FEBS Letters, 1980, 112, 73-78.	1.3	110
205	Fast kinetics of antagonist-acetylcholine receptor interactions: A temperature-jump relaxation study. Biochemical and Biophysical Research Communications, 1980, 92, 766-774.	1.0	12
206	Interactions of fluorescent cholinergic antagonists with the membrane-bound acetylcholine receptor. Neurochemistry International, 1980, 2, 257-267.	1.9	2
207	Modulation of acetylcholine receptor states by thiol modification. Biochemistry, 1980, 19, 2957-2965.	1.2	40
208	Endogenous Chemical Receptors: Some Physical Aspects. Annual Review of Biophysics and Bioengineering, 1979, 8, 287-321.	5.3	56
209	Structural characterization of ordered domains in a hydrophobic membrane protein. Biopolymers, 1979, 18, 2979-2992.	1.2	4
210	Agonist-mediated changes of the acetylcholine receptor in its membrane environment. Journal of Molecular Biology, 1978, 124, 1-26.	2.0	98
211	Immobilized lipid in acetylcholine receptor-rich membranes from Torpedo marmorata Proceedings of the United States of America, 1978, 75, 4329-4333.	3.3	191
212	Intrinsic fluorescence of the membrane-bound acetylcholine receptor: Its quenching by suberyldicholine. Biochemical and Biophysical Research Communications, 1976, 72, 479-488.	1.0	43
213	Inhibitory action of 1-pyrene butyrylcholine and related compounds on choline uptake by cholinergic nerve endings. Journal of Neurochemistry, 1976, 27, 1253-1255.	2.1	24
214	Kinetics of agonist-induced intrinsic fluorescence changes in membrane-bound acetylcholine receptor. Nature, 1976, 263, 429-431.	13.7	77
215	1-Pyrene-butyrylcholine: a fluorescent probe for the cholinergic system Proceedings of the National Academy of Sciences of the United States of America, 1975, 72, 3097-3101.	3.3	34
216	Differences between detergent-extracted acetylcholine receptor and "cholinergic proteolipid― Nature, 1975, 256, 325-327.	13.7	27

#	Article	IF	CITATIONS
217	Purification by affinity chromatography of nicotinic and muscarinic hydrophobic proteins separated by Sephadex LH2O. Biochemical and Biophysical Research Communications, 1975, 63, 194-201.	1.0	14
218	The nicotinic cholinergic receptor: Different compositions evidenced by statistical analysis. Biochemical and Biophysical Research Communications, 1975, 62, 407-414.	1.0	87
219	A comparative study of several membrane proteins from the nervous system. Biochemical and Biophysical Research Communications, 1973, 54, 395-402.	1.0	27
220	Studies on proteolipid proteins from cerebral cortex. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1972, 263, 368-381.	1.7	13
221	Blocking by α-bungarotoxin of the high affinity binding site of the cholinergic receptor proteolipid from Electrophorus. European Journal of Pharmacology, 1972, 17, 303-305.	1.7	4
222	The use of a cholinergic fluorescent probe for the study of the receptor proteolipid. Molecular Pharmacology, 1971, 7, 530-7.	1.0	44
223	Electron microscopy of proteolipid macromolecules from cerebral cortex. Journal of Molecular Biology, 1970, 52, 221-226.	2.0	16
224	Enzymic dissection of cerebral cortex synapses. Brain Research, 1970, 23, 305-313.	1.1	11
225	Laurdan Studies of Membrane Lipid-Nicotinic Acetylcholine Receptor Protein Interactions. , 0, , 531-542.		1