Prasert Auewarakul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4667413/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Probable Person-to-Person Transmission of Avian Influenza A (H5N1). New England Journal of Medicine, 2005, 352, 333-340.	27.0	793
2	Influenza A H5N1 Replication Sites in Humans. Emerging Infectious Diseases, 2005, 11, 1036-1041.	4.3	253
3	Molecular characterization of the complete genome of human influenza H5N1 virus isolates from Thailand. Journal of General Virology, 2005, 86, 423-433.	2.9	191
4	An Avian Influenza H5N1 Virus That Binds to a Human-Type Receptor. Journal of Virology, 2007, 81, 9950-9955.	3.4	188
5	Studies of H5N1 Influenza Virus Infection of Pigs by Using Viruses Isolated in Vietnam and Thailand in 2004. Journal of Virology, 2005, 79, 10821-10825.	3.4	175
6	Identification of prohibitin as a Chikungunya virus receptor protein. Journal of Medical Virology, 2012, 84, 1757-1770.	5.0	143
7	Apoptosis and Pathogenesis of Avian Influenza A (H5N1) Virus in Humans. Emerging Infectious Diseases, 2007, 13, 708-712.	4.3	140
8	Electrochemical Biosensor Based on Surface Imprinting for Zika Virus Detection in Serum. ACS Sensors, 2019, 4, 69-75.	7.8	99
9	Double-Stranded RNA Adenosine Deaminases Enhance Expression of Human Immunodeficiency Virus Type 1 Proteins. Journal of Virology, 2008, 82, 10864-10872.	3.4	85
10	A Child With Avian Influenza A (H5N1) Infection. Pediatric Infectious Disease Journal, 2005, 24, 162-166.	2.0	83
11	Chikungunya in Southeast Asia: understanding the emergence and finding solutions. International Journal of Infectious Diseases, 2011, 15, e671-e676.	3.3	82
12	Antibody responses after dose-sparing intradermal influenza vaccination. Vaccine, 2007, 25, 659-663.	3.8	73
13	Proteomic Analysis of Chikungunya Virus Infected Microgial Cells. PLoS ONE, 2012, 7, e34800.	2.5	58
14	Uncoating of HIV-1 requires cellular activation. Virology, 2005, 337, 93-101.	2.4	53
15	Immunological evidence of Zika virus transmission in Thailand. Asian Pacific Journal of Tropical Medicine, 2016, 9, 141-144.	0.8	51
16	Induced autophagy reduces virus output in dengue infected monocytic cells. Virology, 2011, 418, 74-84.	2.4	50
17	Long-term persistence of Chikungunya virus neutralizing antibodies in human populations of North Eastern Thailand. Virology Journal, 2014, 11, 183.	3.4	48
18	Composition bias and genome polarity of RNA viruses. Virus Research, 2005, 109, 33-37.	2.2	43

#	Article	IF	CITATIONS
19	Kinetics and Longevity of Antibody Response to Influenza A H5N1 Virus Infection in Humans. Vaccine Journal, 2009, 16, 978-981.	3.1	42
20	Building a global atlas of zoonotic viruses. Bulletin of the World Health Organization, 2018, 96, 292-294.	3.3	42
21	Serological Response to the 2009 Pandemic Influenza A (H1N1) Virus for Disease Diagnosis and Estimating the Infection Rate in Thai Population. PLoS ONE, 2011, 6, e16164.	2.5	40
22	Reduction in effective reproduction number of COVID-19 is higher in countries employing active case detection with prompt isolation. Journal of Travel Medicine, 2020, 27, .	3.0	40
23	Positive selection at the receptor-binding site of haemagglutinin H5 in viral sequences derived from human tissues. Journal of General Virology, 2008, 89, 1805-1810.	2.9	39
24	The effect of capsid mutations on HIV-1 uncoating. Virology, 2007, 358, 48-54.	2.4	37
25	Indigenous sources of 2007-2008 H5N1 avian influenza outbreaks in Thailand. Journal of General Virology, 2009, 90, 216-222.	2.9	30
26	A simple screening assay for receptor switching of avian influenza viruses. Journal of Clinical Virology, 2008, 42, 186-189.	3.1	29
27	Erythrocyte Binding Preference of Avian Influenza H5N1 Viruses. Journal of Clinical Microbiology, 2007, 45, 2284-2286.	3.9	27
28	Sialic acid content in human saliva and anti-influenza activity against human and avian influenza viruses. Archives of Virology, 2016, 161, 649-656.	2.1	23
29	N-Linked Glycosylation in C2 Region of HIV-1 Envelope Reduces Sensitivity to Neutralizing Antibodies. Viral Immunology, 2005, 18, 343-353.	1.3	22
30	Outbreaks of Influenza A Among Nonvaccinated Healthcare Workers: Implications for Resource-Limited Settings. Infection Control and Hospital Epidemiology, 2008, 29, 777-780.	1.8	22
31	Induction of TNF-α in human macrophages by avian and human influenza viruses. Archives of Virology, 2010, 155, 1273-1279.	2.1	22
32	Influence of cellular lipid content on influenza A virus replication. Archives of Virology, 2020, 165, 1151-1161.	2.1	22
33	Immunodominant linear B cell epitopes in the spike and membrane proteins of SARS-CoV-2 identified by immunoinformatics prediction and immunoassay. Scientific Reports, 2021, 11, 20383.	3.3	22
34	Zika virus in Thailand. Microbes and Infection, 2018, 20, 670-675.	1.9	21
35	Codon usage similarity between viral and some host genes suggests a codon-specific translational regulation. Heliyon, 2020, 6, e03915.	3.2	20
36	Functional variation of HIV-1 Rev response element in a longitudinally studied cohort. Journal of Medical Virology, 2005, 75, 367-373.	5.0	18

3

#	Article	IF	CITATIONS
37	Functional Variability of Rev Response Element in HIV-1 Primary Isolates. Virus Genes, 2005, 30, 23-29.	1.6	18
38	Distribution of viral RNA, sialic acid receptor, and pathology in H5N1 avian influenza patients. Apmis, 2010, 118, 895-902.	2.0	18
39	Decreased expression of surfactant protein D mRNA in human lungs in fatal cases of H5N1 avian influenza. Journal of Medical Virology, 2011, 83, 1410-1417.	5.0	18
40	Detection of antibodies to duck tembusu virus in human population with or without the history of contact with ducks. Transboundary and Emerging Diseases, 2022, 69, 870-873.	3.0	18
41	HLA-Associated Immune Pressure on Gag Protein in CRF01_AE-Infected Individuals and Its Association with Plasma Viral Load. PLoS ONE, 2010, 5, e11179.	2.5	18
42	Antiviral immune responses in H5N1-infected human lung tissue and possible mechanisms underlying the hyperproduction of interferon-inducible protein IP-10. Biochemical and Biophysical Research Communications, 2010, 398, 752-758.	2.1	17
43	Viral load of the highly pathogenic avian influenza H5N1 virus in infected human tissues. Journal of Medical Virology, 2011, 83, 1418-1423.	5.0	17
44	Analysis of Zika virus neutralizing antibodies in normal healthy Thais. Scientific Reports, 2018, 8, 17193.	3.3	17
45	Dengue virus requires apoptosis linked gene-2-interacting protein X (ALIX) for viral propagation. Virus Research, 2019, 261, 65-71.	2.2	17
46	Compositional Bias and Size of Genomes of Human DNA Viruses. Intervirology, 2007, 50, 123-132.	2.8	16
47	A modeling study of school closure to reduce influenza transmission: A case study of an influenza A (H1N1) outbreak in a private Thai school. Mathematical and Computer Modelling, 2012, 55, 1021-1033.	2.0	16
48	Evolutionary dynamic of antigenic residues on influenza B hemagglutinin. Virology, 2017, 502, 84-96.	2.4	16
49	Immune response to influenza vaccination in ESRD patients undergoing hemodialysis vs. hemodiafiltration. PLoS ONE, 2020, 15, e0227719.	2.5	16
50	Exposure to cold impairs interferon-induced antiviral defense. Archives of Virology, 2017, 162, 2231-2237.	2.1	15
51	Heterogeneity of HIV-1 Rev Response Element. AIDS Research and Human Retroviruses, 2003, 19, 569-574.	1.1	14
52	Glutathionylation of dengue and Zika NS5 proteins affects guanylyltransferase and RNA dependent RNA polymerase activities. PLoS ONE, 2018, 13, e0193133.	2.5	14
53	Analysis of Neutralizing and Enhancing Antibodies to Human Immunodeficiency Virus Type 1 Primary Isolates in Plasma of Individuals Infected withenvGenetic Subtype B and E Viruses in Thailand. Viral Immunology, 1996, 9, 175-185.	1.3	13
54	Cloned cDNA of A/swine/Iowa/15/1930 internal genes as a candidate backbone for reverse genetics vaccine against influenza A viruses. Vaccine, 2012, 30, 1453-1459.	3.8	13

#	Article	IF	CITATIONS
55	Comparative genome analysis between Southeast Asian and South American Zika viruses. Asian Pacific Journal of Tropical Medicine, 2016, 9, 1048-1054.	0.8	13
56	Enhanced Susceptibility of Nasal Polyp Tissues to Avian and Human Influenza Viruses. PLoS ONE, 2010, 5, e12973.	2.5	13
57	Avian Influenza H5N1 Screening of Intensive Care Unit Patients with Community-acquired Pneumonia. Emerging Infectious Diseases, 2006, 12, 1766-1769.	4.3	12
58	Resistance of monocyte to HIV-1 infection is not due to uncoating defect. Virus Research, 2007, 126, 277-281.	2.2	11
59	The N-linked glycosylation site at position 158 on the head of hemagglutinin and the virulence of H5N1 avian influenza virus in mice. Archives of Virology, 2015, 160, 409-415.	2.1	11
60	Microparticle and anti-influenza activity in human respiratory secretion. PLoS ONE, 2017, 12, e0183717.	2.5	11
61	Avian Influenza Virus (H5N1) in Human, Laos. Emerging Infectious Diseases, 2009, 15, 127-129.	4.3	10
62	Repurposing of antiparasitic niclosamide to inhibit respiratory syncytial virus (RSV) replication. Virus Research, 2021, 295, 198277.	2.2	10
63	Genome polarity of RNA viruses reflects the different evolutionary pressures shaping codon usage. Archives of Virology, 2018, 163, 2883-2888.	2.1	9
64	Inhibition of human immunodeficiency virus type 1 by niclosamide through mTORC1 inhibition. Heliyon, 2020, 6, e04050.	3.2	9
65	The Past and Present Threat of Avian Influenza in Thailand. , 2008, , 31.		9
66	In Vivo Tissue-Specific Regulation of the Human Papillomavirus Type 18 Early Promoter by Estrogen, Progesterone, and Their Antagonists. Virology, 2002, 294, 135-140.	2.4	8
67	Surveillance for Reassortant Virus by Multiplex Reverse Transcription-PCR Specific for Eight Genomic Segments of Avian Influenza A H5N1 Viruses. Journal of Clinical Microbiology, 2007, 45, 1637-1639.	3.9	8
68	A Nationally Coordinated Laboratory System for Human Avian Influenza A (H5N1) in Thailand: Program Design, Analysis, and Evaluation. Clinical Infectious Diseases, 2008, 46, 1394-1400.	5.8	8
69	Biological Properties of H5 Hemagglutinin Expressed by Vaccinia Virus Vector and its Immunological Reactivity with Human Sera. Viral Immunology, 2013, 26, 49-59.	1.3	8
70	Susceptibility of human and avian influenza viruses to human and chicken saliva. Journal of Medical Virology, 2014, 86, 872-878.	5.0	8
71	Microparticle Release from Cell Lines and Its Anti-Influenza Activity. Viral Immunology, 2018, 31, 447-456.	1.3	8
72	High correlation between Zika virus NS1 antibodies and neutralizing antibodies in selected serum samples from normal healthy Thais. Scientific Reports, 2019, 9, 13498.	3.3	8

#	Article	IF	CITATIONS
73	Synergistic anti-SARS-CoV-2 activity of repurposed anti-parasitic drug combinations. BMC Pharmacology & Toxicology, 2022, 23, .	2.4	8
74	Inhibition of H5N1 highly pathogenic influenza virus by suppressing a specific sialyltransferase. Archives of Virology, 2010, 155, 889-893.	2.1	7
75	Positive selection sites in the surface genes of dengue virus: phylogenetic analysis of the interserotypic branches of the four serotypes. Virus Genes, 2012, 44, 408-414.	1.6	7
76	A serine-to-asparagine mutation at position 314 of H5N1 avian influenza virus NP is a temperature-sensitive mutation that interferes with nuclear localization of NP. Archives of Virology, 2013, 158, 1151-1157.	2.1	7
77	Identification of Hsp90 as a species independent H5N1 avian influenza A virus PB2 interacting protein. Comparative Immunology, Microbiology and Infectious Diseases, 2015, 43, 28-35.	1.6	7
78	Codon volatility of hemagglutinin genes of H5N1 avian influenza viruses from different clades. Virus Genes, 2009, 38, 404-407.	1.6	6
79	Homosubtypic and heterosubtypic antibodies against highly pathogenic avian influenza H5N1 recombinant proteins in H5N1 survivors and non-H5N1 subjects. Virology, 2014, 454-455, 254-262.	2.4	6
80	Expression of importin- \hat{l}_{\pm} isoforms in human nasal mucosa: implication for adaptation of avian influenza A viruses to human host. Virology Journal, 2016, 13, 90.	3.4	6
81	Ubiquitin onjugating Enzyme E2 L3 is Downregulated by the Chikungunya Virus nsP2 Protease. Proteomics - Clinical Applications, 2018, 12, e1700020.	1.6	6
82	T cell mediated immunity against influenza H5N1 nucleoprotein, matrix and hemagglutinin derived epitopes in H5N1 survivors and non-H5N1 subjects. PeerJ, 2021, 9, e11021.	2.0	6
83	A Novel Pathogenic Mechanism of Highly Pathogenic Avian Influenza H5N1 Viruses Involves Hemagglutinin Mediated Resistance to Serum Innate Inhibitors. PLoS ONE, 2012, 7, e36318.	2.5	6
84	Increase in Activated CD4+ Lymphocytes with CCR5 and CXCR4 in HIV Type 1-Infected Persons. AIDS Research and Human Retroviruses, 1999, 15, 1403-1404.	1.1	5
85	Target Cell Populations of Human Immunodeficiency Virus Type 1 in Peripheral Blood Lymphocytes with Different Chemokine Receptors at Various Stages of Disease Progression. Journal of Virology, 2001, 75, 6384-6391.	3.4	5
86	Intragenic HIV-1 env sequences that enhance gag expression. Virology, 2003, 309, 1-9.	2.4	5
87	Increased HIV-DNA load in CCR5-negative lymphocytes without viral phenotypic change. Virology, 2006, 347, 372-378.	2.4	5
88	Neuraminidase Activity and Resistance of 2009 Pandemic H1N1 Influenza Virus to Antiviral Activity in Bronchoalveolar Fluid. Journal of Virology, 2016, 90, 4637-4646.	3.4	5
89	Mutations in matrix protein 1 and nucleoprotein caused human-specific defects in nuclear exportation and viral assembly of an avian influenza H7N1 virus. Virus Research, 2017, 238, 49-62.	2.2	5
90	Analysis of Tembusu virus infection of human cell lines and human induced pluripotent stem cell derived hepatocytes. Virus Research, 2021, 292, 198252.	2.2	5

#	Article	IF	CITATIONS
91	The Effect of a Single Nucleotide Substitution in the Splicing Silencer in thetat/revIntron on HIV Type 1 Envelope Expression. AIDS Research and Human Retroviruses, 2006, 22, 76-82.	1.1	4
92	Amino acid substitutions in hemagglutinin of the 2009 pandemic influenza A(H1N1) viruses that might affect the viral antigenicity. BMC Research Notes, 2014, 7, 951.	1.4	4
93	H1N1 seasonal influenza virus evolutionary rate changed over time. Virus Research, 2018, 250, 43-50.	2.2	4
94	Zika virus isolation, propagation, and quantification using multiple methods. PLoS ONE, 2021, 16, e0255314.	2.5	4
95	Vaccines for a potential influenza pandemic. Future Microbiology, 2007, 2, 345-349.	2.0	3
96	Institutional responses to avian influenza in Thailand: Control of outbreaks in poultry and preparedness in the case of human-to-human transmission. Anthropology and Medicine, 2008, 15, 61-67.	1.2	3
97	Pathogenesis of the H5N1 avian influenza virus in humans and mammalian models. Future Virology, 2009, 4, 177-184.	1.8	3
98	Case report: Increased viral receptor expression associated with high viral load and severe pneumonia in a young patient infected with 2009 H1N1 influenza a with no preâ€existing conditions. Journal of Medical Virology, 2012, 84, 380-385.	5.0	3
99	Kinetics, Longevity, and Cross-Reactivity of Antineuraminidase Antibody after Natural Infection with Influenza A Viruses. Vaccine Journal, 2017, 24, .	3.1	3
100	Codon usage of HIV regulatory genes is not determined by nucleotide composition. Archives of Virology, 2018, 163, 337-348.	2.1	3
101	Complete Genomic Sequences of Highly Pathogenic H5N1 Avian Influenza Viruses Obtained Directly from Human Autopsy Specimens. Microbiology Resource Announcements, 2018, 7, .	0.6	3
102	The relationship of codon usage to the replication strategy of parvoviruses. Archives of Virology, 2019, 164, 2479-2491.	2.1	3
103	COVID-19 in dermatology practice: getting back on track. Lasers in Medical Science, 2020, 35, 1871-1874.	2.1	3
104	Response of Severe EV71-Infected Patients to Hyperimmune Plasma Treatment: A Pilot Study. Pathogens, 2021, 10, 625.	2.8	2
105	Lack of Association between Adverse Pregnancy Outcomes and Zika Antibodies among Pregnant Women in Thailand between 1997 and 2015. Viruses, 2021, 13, 1423.	3.3	2
106	Substrate specificity of avian influenza H5N1 neuraminidase. World Journal of Virology, 2014, 3, 30.	2.9	2
107	Differential Susceptibility of Quiescent CD4+ Lymphocytes to Syncytial-Inducing and Non—Syncytial-Inducing Isolates of HIV-1. International Journal of Hematology, 2001, 73, 335-338. 	1.6	1
108	HIV-1 Cis Enhancing Sequence (CES) enhances CTE-dependent Gag expression. Virology, 2005, 342, 111-118.	2.4	1

7

#	Article	IF	CITATIONS
109	Delayed antibody dependent enhancement of low passage dengue virus 4 isolates. BMC Research Notes, 2015, 8, 399.	1.4	1
110	Titration of individual strains in trivalent live-attenuated influenza vaccine without neutralization. Journal of Virological Methods, 2016, 237, 154-158.	2.1	1
111	A modified IgC avidity assay for reliability improvement of an in-house capture ELISA to discriminate primary from secondary dengue virus infections. Journal of Virological Methods, 2021, 289, 114043.	2.1	1
112	Microparticles from human the lower airway show inhibitory activity against respiratory syncytial virus. Archives of Virology, 2021, 166, 2579-2584.	2.1	1
113	Full Genomic Sequences of H5N1 Highly Pathogenic Avian Influenza Virus in Human Autopsy Specimens Reveal Genetic Variability and Adaptive Changes for Growth in MDCK Cell Cultures. BioMed Research International, 2021, 2021, 1-13.	1.9	1
114	Cross-reactive antibodies against H7N9 and H5N1 avian influenza viruses in Thais population. Asian Pacific Journal of Allergy and Immunology, 2017, 35, 20-26.	0.4	1
115	A novel SR protein binding site in a cis-regulatory element of HIV-1. Archives of Virology, 2010, 155, 1789-1795.	2.1	0
116	Infection of pulmonary vascular endothelial cells by H5N1 avian influenza virus and its role in pathogenesis. Future Virology, 2012, 7, 345-347.	1.8	0