Matthias Tschoep

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4666922/publications.pdf

Version: 2024-02-01

326 papers 38,699 citations

93 h-index 186 g-index

345 all docs 345 docs citations

times ranked

345

33816 citing authors

#	Article	IF	CITATIONS
1	Ghrelin induces adiposity in rodents. Nature, 2000, 407, 908-913.	13.7	3,566
2	The Distribution and Mechanism of Action of Ghrelin in the CNS Demonstrates a Novel Hypothalamic Circuit Regulating Energy Homeostasis. Neuron, 2003, 37, 649-661.	3.8	1,465
3	Obesity is associated with hypothalamic injury in rodents and humans. Journal of Clinical Investigation, 2012, 122, 153-162.	3.9	1,448
4	Sirt1 protects against high-fat diet-induced metabolic damage. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9793-9798.	3.3	841
5	Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. Journal of Clinical Investigation, 2006, 116 , 3229 - 3239 .	3.9	836
6	Ghrelin. Molecular Metabolism, 2015, 4, 437-460.	3.0	810
7	Ghrelin controls hippocampal spine synapse density and memory performance. Nature Neuroscience, 2006, 9, 381-388.	7.1	738
8	A guide to analysis of mouse energy metabolism. Nature Methods, 2012, 9, 57-63.	9.0	655
9	UCP2 mediates ghrelin's action on NPY/AgRP neurons by lowering free radicals. Nature, 2008, 454, 846-851.	13.7	633
10	Extent and Direction of Ghrelin Transport Across the Blood-Brain Barrier Is Determined by Its Unique Primary Structure. Journal of Pharmacology and Experimental Therapeutics, 2002, 302, 822-827.	1.3	592
11	Dietary Fructose Reduces Circulating Insulin and Leptin, Attenuates Postprandial Suppression of Ghrelin, and Increases Triglycerides in Women. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 2963-2972.	1.8	586
12	Animal models of obesity and diabetes mellitus. Nature Reviews Endocrinology, 2018, 14, 140-162.	4.3	563
13	Sirtuin 1 and Sirtuin 3: Physiological Modulators of Metabolism. Physiological Reviews, 2012, 92, 1479-1514.	13.1	551
14	Metabolic Activation of Intrahepatic CD8+ T Cells and NKT Cells Causes Nonalcoholic Steatohepatitis and Liver Cancer via Cross-Talk with Hepatocytes. Cancer Cell, 2014, 26, 549-564.	7.7	531
15	A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nature Chemical Biology, 2009, 5, 749-757.	3.9	512
16	A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nature Medicine, 2015, 21, 27-36.	15.2	481
17	Unimolecular Dual Incretins Maximize Metabolic Benefits in Rodents, Monkeys, and Humans. Science Translational Medicine, 2013, 5, 209ra151.	5.8	461
18	Hypothalamic Fatty Acid Metabolism Mediates the Orexigenic Action of Ghrelin. Cell Metabolism, 2008, 7, 389-399.	7.2	417

#	Article	IF	CITATIONS
19	Ghrelin action in the brain controls adipocyte metabolism. Journal of Clinical Investigation, 2006, 116, 1983-1993.	3.9	397
20	Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability. Cell, 2016, 166, 867-880.	13.5	382
21	HIGH ALTITUDE INCREASES CIRCULATING INTERLEUKIN-6, INTERLEUKIN-1 RECEPTOR ANTAGONIST AND C-REACTIVE PROTEIN. Cytokine, 2000, 12, 246-252.	1.4	376
22	Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14875-14880.	3.3	370
23	Anti-obesity drugs: past, present and future. DMM Disease Models and Mechanisms, 2012, 5, 621-626.	1.2	360
24	GOAT links dietary lipids with the endocrine control of energy balance. Nature Medicine, 2009, 15, 741-745.	15.2	359
25	Anti-obesity drug discovery: advances and challenges. Nature Reviews Drug Discovery, 2022, 21, 201-223.	21.5	357
26	The central melanocortin system directly controls peripheral lipid metabolism. Journal of Clinical Investigation, 2007, 117, 3475-3488.	3.9	341
27	Osteopontin mediates obesity-induced adipose tissue macrophage infiltration and insulin resistance in mice. Journal of Clinical Investigation, 2007, 117, 2877-2888.	3.9	319
28	High Circulating Ghrelin: A Potential Cause for Hyperphagia and Obesity in Prader-Willi Syndrome. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 5461-5464.	1.8	317
29	Ghrelin in the regulation of body weight and metabolism. Frontiers in Neuroendocrinology, 2010, 31, 44-60.	2.5	300
30	The metabolic actions of glucagon revisited. Nature Reviews Endocrinology, 2010, 6, 689-697.	4.3	292
31	Cannabinoids, opioids and eating behavior: The molecular face of hedonism?. Brain Research Reviews, 2006, 51, 85-107.	9.1	288
32	Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nature Genetics, 2016, 48, 497-499.	9.4	287
33	Ghrelin Suppresses Glucose-Stimulated Insulin Secretion and Deteriorates Glucose Tolerance in Healthy Humans. Diabetes, 2010, 59, 2145-2151.	0.3	281
34	Exposure to elevated levels of dietary fat attenuates psychostimulant reward and mesolimbic dopamine turnover in the rat Behavioral Neuroscience, 2008, 122, 1257-1263.	0.6	279
35	Identification of proliferative and mature β-cells in the islets of Langerhans. Nature, 2016, 535, 430-434.	13.7	279
36	Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding. Nature Neuroscience, 2014, 17, 908-910.	7.1	268

#	Article	ΙF	Citations
37	Cooperation between brain and islet in glucose homeostasis and diabetes. Nature, 2013, 503, 59-66.	13.7	261
38	Atlas of Circadian Metabolism Reveals System-wide Coordination and Communication between Clocks. Cell, 2018, 174, 1571-1585.e11.	13.5	258
39	Ghrelin Promotes and Protects Nigrostriatal Dopamine Function via a UCP2-Dependent Mitochondrial Mechanism. Journal of Neuroscience, 2009, 29, 14057-14065.	1.7	245
40	Targeted estrogen delivery reverses the metabolic syndrome. Nature Medicine, 2012, 18, 1847-1856.	15.2	241
41	The Sustained Effects of a Dual GIP/GLP-1 Receptor Agonist, NNC0090-2746, in Patients with Type 2 Diabetes. Cell Metabolism, 2017, 26, 343-352.e2.	7.2	238
42	Glucose and Weight Control in Mice with a Designed Ghrelin O-Acyltransferase Inhibitor. Science, 2010, 330, 1689-1692.	6.0	234
43	Gut-Brain Cross-Talk in Metabolic Control. Cell, 2017, 168, 758-774.	13.5	218
44	Hormones and diet, but not body weight, control hypothalamic microglial activity. Glia, 2014, 62, 17-25.	2.5	203
45	Challenges and Opportunities of Defining Clinical Leptin Resistance. Cell Metabolism, 2012, 15, 150-156.	7.2	201
46	Role of astrocytes, microglia, and tanycytes in brain control of systemic metabolism. Nature Neuroscience, 2019, 22, 7-14.	7.1	200
47	Unimolecular Polypharmacy for Treatment of Diabetes and Obesity. Cell Metabolism, 2016, 24, 51-62.	7.2	198
48	Rodent obesity models: An overview. Experimental and Clinical Endocrinology and Diabetes, 2001, 109, 307-319.	0.6	192
49	Fibroblast Growth Factor 21 Mediates Specific Glucagon Actions. Diabetes, 2013, 62, 1453-1463.	0.3	191
50	Direct Control of Brown Adipose Tissue Thermogenesis by Central Nervous System Glucagon-Like Peptide-1 Receptor Signaling. Diabetes, 2012, 61, 2753-2762.	0.3	188
51	Plasma Ghrelin, Obesity, and the Polycystic Ovary Syndrome: Correlation with Insulin Resistance and Androgen Levels. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 5625-5629.	1.8	180
52	Plasma proteome profiling discovers novel proteins associated with nonâ€alcoholic fatty liver disease. Molecular Systems Biology, 2019, 15, e8793.	3.2	176
53	A role for \hat{l}^2 -melanocyte-stimulating hormone in human body-weight regulation. Cell Metabolism, 2006, 3, 141-146.	7.2	171
54	Effect of Human Body Weight Changes on Circulating Levels of Peptide YY and Peptide YY3–36. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 583-588.	1.8	162

#	Article	IF	Citations
55	Hypothalamic PGC-1α Protects Against High-Fat Diet Exposure by Regulating ERα. Cell Reports, 2014, 9, 633-645.	2.9	159
56	Simultaneous deletion of ghrelin and its receptor increases motor activity and energy expenditure. American Journal of Physiology - Renal Physiology, 2008, 294, G610-G618.	1.6	153
57	Chemical Hybridization of Glucagon and Thyroid Hormone Optimizes Therapeutic Impact for Metabolic Disease. Cell, 2016, 167, 843-857.e14.	13.5	153
58	Safety, tolerability and pharmacokinetics of intravenous ghrelin for cancer-related anorexia/cachexia: a randomised, placebo-controlled, double-blind, double-crossover study. British Journal of Cancer, 2008, 98, 300-308.	2.9	146
59	Peripheral, but Not Central, CB1 Antagonism Provides Food Intake–Independent Metabolic Benefits in Diet-Induced Obese Rats. Diabetes, 2008, 57, 2977-2991.	0.3	145
60	Direct Control of Peripheral Lipid Deposition by CNS GLP-1 Receptor Signaling Is Mediated by the Sympathetic Nervous System and Blunted in Diet-Induced Obesity. Journal of Neuroscience, 2009, 29, 5916-5925.	1.7	144
61	Inhibition of ghrelin action in vitro and in vivo by an RNA-Spiegelmer. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13174-13179.	3.3	142
62	Ghrelin Enhances Olfactory Sensitivity and Exploratory Sniffing in Rodents and Humans. Journal of Neuroscience, 2011, 31, 5841-5846.	1.7	141
63	Anti-Obesity Therapy: from Rainbow Pills to Polyagonists. Pharmacological Reviews, 2018, 70, 712-746.	7.1	137
64	Adipocyte LDL receptorâ€"related proteinâ€"1 expression modulates postprandial lipid transport and glucose homeostasis in mice. Journal of Clinical Investigation, 2007, 117, 3271-3282.	3.9	135
65	Restoration of leptin responsiveness in dietâ€induced obese mice using an optimized leptin analog in combination with exendinâ€4 or FGF21. Journal of Peptide Science, 2012, 18, 383-393.	0.8	133
66	Hypothalamic innate immune reaction in obesity. Nature Reviews Endocrinology, 2015, 11, 339-351.	4.3	133
67	Optimized GIP analogs promote body weight lowering in mice through GIPR agonism not antagonism. Molecular Metabolism, 2019, 20, 51-62.	3.0	130
68	The Effects of Vertical Sleeve Gastrectomy in Rodents Are Chrelin Independent. Gastroenterology, 2013, 144, 50-52.e5.	0.6	129
69	KSR2 Is an Essential Regulator of AMP Kinase, Energy Expenditure, and Insulin Sensitivity. Cell Metabolism, 2009, 10, 366-378.	7.2	128
70	Reappraisal of GIP Pharmacology for Metabolic Diseases. Trends in Molecular Medicine, 2016, 22, 359-376.	3.5	128
71	The glucose-dependent insulinotropic polypeptide (GIP) regulates body weight and food intake via CNS-GIPR signaling. Cell Metabolism, 2021, 33, 833-844.e5.	7.2	128
72	GLP-1/glucagon receptor co-agonism for treatment of obesity. Diabetologia, 2017, 60, 1851-1861.	2.9	126

#	Article	IF	CITATIONS
73	The Melanocortin-3 Receptor Is Required for Entrainment to Meal Intake. Journal of Neuroscience, 2008, 28, 12946-12955.	1.7	120
74	Modulatory calcineurin-interacting proteins 1 and 2 function as calcineurin facilitators in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7327-7332.	3.3	118
75	Ghrelin regulation of glucose metabolism. Peptides, 2018, 100, 236-242.	1.2	117
76	GLP-1/Glucagon Coagonism Restores Leptin Responsiveness in Obese Mice Chronically Maintained on an Obesogenic Diet. Diabetes, 2014, 63, 1422-1427.	0.3	116
77	The Cannabinoid Receptor 2 Is Critical for the Host Response to Sepsis. Journal of Immunology, 2009, 183, 499-505.	0.4	113
78	Targeting the Incretin/Glucagon System With Triagonists to Treat Diabetes. Endocrine Reviews, 2018, 39, 719-738.	8.9	113
79	Optimization of coâ€agonism at GLPâ€1 and glucagon receptors to safely maximize weight reduction in DIOâ€rodents. Biopolymers, 2012, 98, 443-450.	1.2	110
80	PYY3-36 as an anti-obesity drug target. Obesity Reviews, 2005, 6, 307-322.	3.1	109
81	Therapeutic Potential of Targeting the Ghrelin Pathway. International Journal of Molecular Sciences, 2017, 18, 798.	1.8	109
82	Synaptic plasticity in neuronal circuits regulating energy balance. Nature Neuroscience, 2012, 15, 1336-1342.	7.1	108
83	p62 Links \hat{I}^2 -adrenergic input to mitochondrial function and thermogenesis. Journal of Clinical Investigation, 2013, 123, 469-478.	3.9	107
84	<i>Central Nervous System Regulation of Energy Metabolism</i> <io>Sciences, 2008, 1126, 14-19. </io>	1.8	105
85	Peripheral ghrelin enhances sweet taste food consumption and preference, regardless of its caloric content. Physiology and Behavior, 2010, 101, 277-281.	1.0	104
86	Dietary sugars, not lipids, drive hypothalamic inflammation. Molecular Metabolism, 2017, 6, 897-908.	3.0	104
87	A Role for Brain-Specific Homeobox Factor Bsx in the Control of Hyperphagia and Locomotory Behavior. Cell Metabolism, 2007, 5, 450-463.	7.2	103
88	Testosterone Replacement Therapy Restores Normal Ghrelin in Hypogonadal Men. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 4139-4143.	1.8	102
89	Ghrelinâ€induced adiposity is independent of orexigenic effects. FASEB Journal, 2011, 25, 2814-2822.	0.2	101
90	Both Acyl and Des-Acyl Ghrelin Regulate Adiposity and Glucose Metabolism via Central Nervous System Ghrelin Receptors. Diabetes, 2014, 63, 122-131.	0.3	100

#	Article	IF	Citations
91	Long-Term Cold Adaptation Does Not Require FGF21 or UCP1. Cell Metabolism, 2017, 26, 437-446.e5.	7.2	100
92	A functional role for the p62–ERK1 axis in the control of energy homeostasis and adipogenesis. EMBO Reports, 2010, 11, 226-232.	2.0	97
93	Endogenous and exogenous glucocorticoids decrease plasma ghrelin in humans. European Journal of Endocrinology, 2004, 151, 113-117.	1.9	96
94	Gut hormone polyagonists for the treatment of type 2 diabetes. Peptides, 2018, 100, 190-201.	1.2	96
95	Ghrelin, obesity and diabetes. Nature Clinical Practice Endocrinology and Metabolism, 2007, 3, 705-712.	2.9	94
96	Targeted pharmacological therapy restores \hat{l}^2 -cell function for diabetes remission. Nature Metabolism, 2020, 2, 192-209.	5.1	93
97	Ghrelin Is Produced in Taste Cells and Ghrelin Receptor Null Mice Show Reduced Taste Responsivity to Salty (NaCl) and Sour (Citric Acid) Tastants. PLoS ONE, 2010, 5, e12729.	1.1	93
98	TNFα drives mitochondrial stress in POMC neurons in obesity. Nature Communications, 2017, 8, 15143.	5.8	92
99	Emerging hormonal-based combination pharmacotherapies for the treatment of metabolic diseases. Nature Reviews Endocrinology, 2019, 15, 90-104.	4.3	92
100	Mutually Opposite Signal Modulation by Hypothalamic Heterodimerization of Ghrelin and Melanocortin-3 Receptors. Journal of Biological Chemistry, 2011, 286, 39623-39631.	1.6	90
101	Defective Lipid Delivery Modulates Glucose Tolerance and Metabolic Response to Diet in Apolipoprotein E–Deficient Mice. Diabetes, 2008, 57, 5-12.	0.3	88
102	N-acyl Taurines and Acylcarnitines Cause an Imbalance in Insulin Synthesis and Secretion Provoking \hat{l}^2 Cell Dysfunction in Type 2 Diabetes. Cell Metabolism, 2017, 25, 1334-1347.e4.	7.2	87
103	Monomeric GLP-1/GIP/glucagon triagonism corrects obesity, hepatosteatosis, and dyslipidemia in female mice. Molecular Metabolism, 2017, 6, 440-446.	3.0	87
104	Melanocortin signaling in the CNS directly regulates circulating cholesterol. Nature Neuroscience, 2010, 13, 877-882.	7.1	86
105	CNS Leptin Action Modulates Immune Response and Survival in Sepsis. Journal of Neuroscience, 2010, 30, 6036-6047.	1.7	86
106	Mechanisms of oleoylethanolamide-induced changes in feeding behavior and motor activity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R729-R737.	0.9	83
107	Peptide lipidation stabilizes structure to enhance biological function. Molecular Metabolism, 2013, 2, 468-479.	3.0	83
108	Incretin-like effects of small molecule trace amine-associated receptor 1 agonists. Molecular Metabolism, 2016, 5, 47-56.	3.0	82

#	Article	IF	CITATIONS
109	Adipocyte p62/SQSTM1 Suppresses Tumorigenesis through Opposite Regulations of Metabolism in Adipose Tissue and Tumor. Cancer Cell, 2018, 33, 770-784.e6.	7.7	81
110	Hyperphagia, lower body temperature, and reduced running wheel activity precede development of morbid obesity in New Zealand obese mice. Physiological Genomics, 2006, 25, 234-241.	1.0	80
111	POMC neuronal heterogeneity in energy balance and beyond: an integrated view. Nature Metabolism, 2021, 3, 299-308.	5.1	80
112	κâ€Opioid receptors control the metabolic response to a highâ€energy diet in mice. FASEB Journal, 2010, 24, 1151-1159.	0.2	78
113	Cannabinoid receptor 1 (CB1) antagonism enhances glucose utilisation and activates brown adipose tissue in diet-induced obese mice. Diabetologia, 2011, 54, 3121-3131.	2.9	77
114	Induction of ketosis in rats fed low-carbohydrate, high-fat diets depends on the relative abundance of dietary fat and protein. American Journal of Physiology - Endocrinology and Metabolism, 2011, 300, E65-E76.	1.8	76
115	The pharmacokinetics of acyl, des-acyl, and total ghrelin in healthy human subjects. European Journal of Endocrinology, 2013, 168, 821-828.	1.9	75
116	Gastric bypass surgery for treatment of hypothalamic obesity after craniopharyngioma therapy. Nature Clinical Practice Endocrinology and Metabolism, 2007, 3, 606-609.	2.9	73
117	Peptide YY Regulates Bone Turnover in Rodents. Gastroenterology, 2007, 133, 1534-1543.	0.6	73
118	GOAT: the master switch for the ghrelin system?. European Journal of Endocrinology, 2010, 163, 1-8.	1.9	73
119	How diabetes went to our heads. Nature Medicine, 2006, 12, 47-49.	15.2	71
120	High-fat diet exposure induces IgG accumulation in hypothalamic microglia. DMM Disease Models and Mechanisms, 2012, 5, 686-90.	1.2	71
121	Calcineurin Links Mitochondrial Elongation with Energy Metabolism. Cell Metabolism, 2015, 22, 838-850.	7.2	71
122	A Stat6/Pten Axis Links Regulatory T Cells with Adipose Tissue Function. Cell Metabolism, 2017, 26, 475-492.e7.	7.2	71
123	Gastric Bypass Surgery Attenuates Ethanol Consumption in Ethanol-Preferring Rats. Biological Psychiatry, 2012, 72, 354-360.	0.7	70
124	Estrogen, astrocytes and the neuroendocrine control of metabolism. Reviews in Endocrine and Metabolic Disorders, 2013, 14, 331-338.	2.6	70
125	Brown fat in a protoendothermic mammal fuels eutherian evolution. Nature Communications, 2013, 4, 2140.	5.8	70
126	Voluntary Exercise Improves High-Fat Diet-Induced Leptin Resistance Independent of Adiposity. Endocrinology, 2011, 152, 2655-2664.	1.4	68

#	Article	IF	CITATIONS
127	Hypothalamic leptin action is mediated by histone deacetylase 5. Nature Communications, 2016, 7, 10782.	5.8	68
128	Obesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension. Cell Metabolism, 2021, 33, 1155-1170.e10.	7.2	68
129	Ghrelin as a Potential Anti-Obesity Target. Current Pharmaceutical Design, 2003, 9, 1383-1395.	0.9	68
130	Spare mitochondrial respiratory capacity permits human adipocytes to maintain ATP homeostasis under hypoglycemic conditions. FASEB Journal, 2014, 28, 761-770.	0.2	67
131	Postprandial ghrelin release in anorectic patients before and after weight gain. Psychoneuroendocrinology, 2005, 30, 577-581.	1.3	66
132	An anatomic basis for the communication of hypothalamic, cortical and mesolimbic circuitry in the regulation of energy balance. European Journal of Neuroscience, 2009, 30, 415-430.	1.2	66
133	The Role of Ghrelin in the Control of Energy Balance. Handbook of Experimental Pharmacology, 2012, , 161-184.	0.9	66
134	Hypothalamic Astrocytes in Obesity. Endocrinology and Metabolism Clinics of North America, 2013, 42, 57-66.	1.2	66
135	Identification of GPR83 as the receptor for the neuroendocrine peptide PEN. Science Signaling, 2016, 9, ra43.	1.6	66
136	Molecular Integration of Incretin and Glucocorticoid Action Reverses Immunometabolic Dysfunction and Obesity. Cell Metabolism, 2017, 26, 620-632.e6.	7.2	66
137	Getting to the core of the gut microbiome. Nature Biotechnology, 2009, 27, 344-346.	9.4	65
138	The orphan receptor Gpr83 regulates systemic energy metabolism via ghrelin-dependent and ghrelin-independent mechanisms. Nature Communications, 2013, 4, 1968.	5.8	64
139	Fluorescent blood–brain barrier tracing shows intact leptin transport in obese mice. International Journal of Obesity, 2019, 43, 1305-1318.	1.6	64
140	Brain Circuits Regulating Energy Homeostasis. Neuroscientist, 2004, 10, 235-246.	2.6	63
141	Brain–gut–adipose-tissue communication pathways at a glance. DMM Disease Models and Mechanisms, 2012, 5, 583-587.	1.2	63
142	Evidence for three genetic loci involved in both anorexia nervosa risk and variation of body mass index. Molecular Psychiatry, 2017, 22, 192-201.	4.1	63
143	Revisiting energy expenditure: how to correct mouse metabolic rate for body mass. Nature Metabolism, 2021, 3, 1134-1136.	5.1	63
144	Postprandial lysophospholipid suppresses hepatic fatty acid oxidation: the molecular link between group 1B phospholipase A ₂ and dietâ€induced obesity. FASEB Journal, 2010, 24, 2516-2524.	0.2	62

#	Article	IF	CITATIONS
145	Glucagon regulation of energy metabolism. Physiology and Behavior, 2010, 100, 545-548.	1.0	62
146	Inverse Agonistic Action of 3-lodothyronamine at the Human Trace Amine-Associated Receptor 5. PLoS ONE, 2015, 10, e0117774.	1.1	62
147	Ghrelin acylation and metabolic control. Peptides, 2011, 32, 2301-2308.	1.2	61
148	Mice lacking δâ€opioid receptors resist the development of dietâ€induced obesity. FASEB Journal, 2012, 26, 3483-3492.	0.2	61
149	Long-term effects of ghrelin and ghrelin receptor agonists on energy balance in rats. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E78-E84.	1.8	60
150	Roux-en-Y Gastric Bypass Surgery But Not Vertical Sleeve Gastrectomy Decreases Bone Mass in Male Rats. Endocrinology, 2013, 154, 2015-2024.	1.4	60
151	GLP-1 and estrogen conjugate acts in the supramammillary nucleus to reduce food-reward and body weight. Neuropharmacology, 2016, 110, 396-406.	2.0	60
152	Endogenous FGF21-signaling controls paradoxical obesity resistance of UCP1-deficient mice. Nature Communications, 2020, 11, 624.	5. 8	60
153	Glucocorticoid Signaling in the Arcuate Nucleus Modulates Hepatic Insulin Sensitivity. Diabetes, 2012, 61, 339-345.	0.3	59
154	Dual melanocortinâ€4 receptor and GLP â€1 receptor agonism amplifies metabolic benefits in dietâ€induced obese mice. EMBO Molecular Medicine, 2015, 7, 288-298.	3.3	59
155	Regulation of body weight and energy homeostasis by neuronal cell adhesion molecule 1. Nature Neuroscience, 2017, 20, 1096-1103.	7.1	59
156	Disruption of Lipid Uptake in Astroglia Exacerbates Diet-Induced Obesity. Diabetes, 2017, 66, 2555-2563.	0.3	59
157	Impaired glucose tolerance in rats fed low-carbohydrate, high-fat diets. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E1059-E1070.	1.8	58
158	Obesity and the Neuroendocrine Control of Energy Homeostasis: The Role of Spontaneous Locomotor Activity. Journal of Nutrition, 2005, 135, 1314-1319.	1.3	56
159	Effect of central administration of QRFP(26) peptide on energy balance and characterization of a second QRFP receptor in rat. Brain Research, 2006, 1119, 133-149.	1.1	56
160	The endocannabinoid system: Role in glucose and energy metabolism. Pharmacological Research, 2009, 60, 93-98.	3.1	56
161	Ghrelin and cannabinoids require the ghrelin receptor to affect cellular energy metabolism. Molecular and Cellular Endocrinology, 2013, 365, 303-308.	1.6	56
162	Fibroblast activation protein (FAP) as a novel metabolic target. Molecular Metabolism, 2016, 5, 1015-1024.	3.0	56

#	Article	IF	CITATIONS
163	High calorie diet triggers hypothalamic angiopathy. Molecular Metabolism, 2012, 1, 95-100.	3.0	55
164	Deletion of Monoglyceride Lipase in Astrocytes Attenuates Lipopolysaccharide-induced Neuroinflammation. Journal of Biological Chemistry, 2016, 291, 913-923.	1.6	55
165	Inceptor counteracts insulin signalling in \hat{I}^2 -cells to control glycaemia. Nature, 2021, 590, 326-331.	13.7	55
166	Dietary triglycerides act on mesolimbic structures to regulate the rewarding and motivational aspects of feeding. Molecular Psychiatry, 2014, 19, 1095-1105.	4.1	54
167	High-fat-diet-induced obesity causes an inflammatory and tumor-promoting microenvironment in the rat kidney. DMM Disease Models and Mechanisms, 2012, 5, 627-35.	1.2	53
168	Altered Lipid and Salt Taste Responsivity in Ghrelin and GOAT Null Mice. PLoS ONE, 2013, 8, e76553.	1.1	53
169	miR-184 Regulates Pancreatic \hat{l}^2 -Cell Function According to Glucose Metabolism. Journal of Biological Chemistry, 2015, 290, 20284-20294.	1.6	53
170	Bsx, a Novel Hypothalamic Factor Linking Feeding with Locomotor Activity, Is Regulated by Energy Availability. Endocrinology, 2008, 149, 3009-3015.	1.4	52
171	A Role for Astrocytes in the Central Control of Metabolism. Neuroendocrinology, 2011, 93, 143-149.	1.2	52
172	Circulating Triglycerides Gate Dopamine-Associated Behaviors through DRD2-Expressing Neurons. Cell Metabolism, 2020, 31, 773-790.e11.	7.2	52
173	Development of diabetes in obese, insulin-resistant mice: essential role of dietary carbohydrate in beta cell destruction. Diabetologia, 2007, 50, 1481-1489.	2.9	51
174	Comparison of hydrogenated vegetable shortening and nutritionally complete high-fat diet on limited access-binge behavior in rats. Physiology and Behavior, 2007, 92, 924-930.	1.0	50
175	Ghrelin and PYY in the regulation of energy balance and metabolism: lessons from mouse mutants. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E909-E919.	1.8	50
176	Exendin-4 increases blood glucose levels acutely in rats by activation of the sympathetic nervous system. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E1088-E1096.	1.8	49
177	The GOAT-Ghrelin System Is Not Essential for Hypoglycemia Prevention during Prolonged Calorie Restriction. PLoS ONE, 2012, 7, e32100.	1.1	48
178	Ghrelin-induced food intake and adiposity depend on central mTORC1/S6K1 signaling. Molecular and Cellular Endocrinology, 2013, 381, 280-290.	1.6	48
179	Physiologic Concentrations of Exogenously Infused Ghrelin Reduces Insulin Secretion Without Affecting Insulin Sensitivity in Healthy Humans. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 2536-2543.	1.8	47
180	Diet-induced alteration of intestinal stem cell function underlies obesity and prediabetes in mice. Nature Metabolism, 2021, 3, 1202-1216.	5.1	47

#	Article	IF	Citations
181	Negative Relationship between Fasting Plasma Ghrelin Concentrations andad LibitumFood Intake. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 2951-2956.	1.8	46
182	Ghrelin and its potential in the treatment of eating/wasting disorders and cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2010, 1, 159-167.	2.9	46
183	Duodenal nutrient exclusion improves metabolic syndrome and stimulates villus hyperplasia. Gut, 2014, 63, 1238-1246.	6.1	46
184	A Novel Human-Based Receptor Antagonist of Sustained Action Reveals Body Weight Control by Endogenous GLP-1. ACS Chemical Biology, 2011, 6, 135-145.	1.6	45
185	Celastrol Promotes Weight Loss in Diet-Induced Obesity by Inhibiting the Protein Tyrosine Phosphatases PTP1B and TCPTP in the Hypothalamus. Journal of Medicinal Chemistry, 2018, 61, 11144-11157.	2.9	45
186	Genetic variation of the ghrelin activator gene ghrelin O-acyltransferase (GOAT) is associated with anorexia nervosa. Journal of Psychiatric Research, 2011, 45, 706-711.	1.5	44
187	A prospective study of serum ghrelin levels in patients treated with clozapine. Journal of Neural Transmission, 2005, 112, 1411-1416.	1.4	43
188	Mice with chronically increased circulating ghrelin develop age-related glucose intolerance. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E752-E760.	1.8	43
189	Central nervous system melanocortinâ€3 receptors are required for synchronizing metabolism during entrainment to restricted feeding during the light cycle. FASEB Journal, 2010, 24, 862-872.	0.2	43
190	BIOMEDICINE: Separation of Conjoined Hormones Yields Appetite Rivals. Science, 2005, 310, 985-986.	6.0	42
191	Deficiency of glucose-dependent insulinotropic polypeptide receptor prevents ovariectomy-induced obesity in mice. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E350-E355.	1.8	42
192	Acute Administration of Unacylated Ghrelin Has No Effect on Basal or Stimulated Insulin Secretion in Healthy Humans. Diabetes, 2014, 63, 2309-2319.	0.3	42
193	Coordinated targeting of cold and nicotinic receptors synergistically improves obesity and type 2 diabetes. Nature Communications, 2018, 9, 4304.	5.8	41
194	Metabolic syndrome and extensive adipose tissue inflammation in morbidly obese Göttingen minipigs. Molecular Metabolism, 2018, 16, 180-190.	3.0	41
195	Glucagon inhibits ghrelin secretion in humans. European Journal of Endocrinology, 2005, 153, 397-402.	1.9	40
196	GLP-1R Responsiveness Predicts Individual Gastric Bypass Efficacy on Glucose Tolerance in Rats. Diabetes, 2014, 63, 505-513.	0.3	40
197	Peptideâ€based multiâ€agonists: a new paradigm in metabolic pharmacology. Journal of Internal Medicine, 2018, 284, 581-602.	2.7	40
198	Cross-Sectional and Prospective Relationships of Fasting Plasma Ghrelin Concentrations with Anthropometric Measures in Pima Indian Children. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 3756-3761.	1.8	39

#	Article	IF	CITATIONS
199	î±-Melanocyte stimulating hormone promotes muscle glucose uptake via melanocortin 5 receptors. Molecular Metabolism, 2016, 5, 807-822.	3.0	39
200	Celastrol-Induced Weight Loss Is Driven by Hypophagia and Independent From UCP1. Diabetes, 2018, 67, 2456-2465.	0.3	39
201	Spatiotemporal GLP-1 and GIP receptor signaling and trafficking/recycling dynamics induced by selected receptor mono- and dual-agonists. Molecular Metabolism, 2021, 49, 101181.	3.0	39
202	Horizons in Nutritional Science. British Journal of Nutrition, 2005, 93, 765-771.	1.2	38
203	Alterations in neuronal control of body weight and anxiety behavior by glutathione peroxidase 4 deficiency. Neuroscience, 2017, 357, 241-254.	1.1	38
204	Ghrelin in eating disorders. Molecular and Cellular Endocrinology, 2011, 340, 29-34.	1.6	36
205	A Macrophage NBR1-MEKK3 Complex Triggers JNK-Mediated Adipose Tissue Inflammation in Obesity. Cell Metabolism, 2014, 20, 499-511.	7.2	36
206	MC4R Dimerization in the Paraventricular Nucleus and GHSR/MC3R Heterodimerization in the Arcuate Nucleus: Is There Relevance for Body Weight Regulation?. Neuroendocrinology, 2012, 95, 277-288.	1.2	35
207	The ghrelin O-acyltransferase–ghrelin system: a novel regulator of glucose metabolism. Current Opinion in Endocrinology, Diabetes and Obesity, 2011, 18, 50-55.	1.2	34
208	Outstanding Scientific Achievement Award Lecture 2011: Defeating Diabesity. Diabetes, 2012, 61, 1309-1314.	0.3	33
209	Long-Acting Neurotensin Synergizes With Liraglutide to Reverse Obesity Through a Melanocortin-Dependent Pathway. Diabetes, 2019, 68, 1329-1340.	0.3	33
210	Fat fuels insulin resistance through Toll-like receptors. Nature Medicine, 2006, 12, 1359-1361.	15.2	32
211	Metabolic effects of diets differing in glycaemic index depend on age and endogenous glucose-dependent insulinotrophic polypeptide in mice. Diabetologia, 2009, 52, 2159-2168.	2.9	32
212	Systemic ghrelin and reward: Effect of cholinergic blockade. Physiology and Behavior, 2011, 102, 481-484.	1.0	32
213	GLP-1–oestrogen attenuates hyperphagia and protects from beta cell failure in diabetes-prone New Zealand obese (NZO) mice. Diabetologia, 2015, 58, 604-614.	2.9	32
214	Ghrelin, peptide YY and their hypothalamic targets differentially regulate spontaneous physical activity. Physiology and Behavior, 2011, 105, 52-61.	1.0	31
215	Renaissance of leptin for obesity therapy. Diabetologia, 2016, 59, 920-927.	2.9	31
216	Caloric Restriction Chronically Impairs Metabolic Programming in Mice. Diabetes, 2012, 61, 2734-2742.	0.3	30

#	Article	IF	Citations
217	Hypothalamic Tanycytes: Gatekeepers to Metabolic Control. Cell Metabolism, 2014, 19, 173-175.	7.2	30
218	Selection and progression of unimolecular agonists at the GIP, GLP-1, and glucagon receptors as drug candidates. Peptides, 2020, 125, 170225.	1.2	30
219	Distribution of ghrelin-immunoreactive neuronal networks in the human hypothalamus. Brain Research, 2006, 1125, 31-36.	1.1	29
220	Differential colonization with segmented filamentous bacteria and Lactobacillus murinus do not drive divergent development of diet-induced obesity in C57BL/6 mice. Molecular Metabolism, 2013, 2, 171-183.	3.0	29
221	Chronic d-serine supplementation impairs insulin secretion. Molecular Metabolism, 2018, 16, 191-202.	3.0	29
222	Functional identity of hypothalamic melanocortin neurons depends on Tbx3. Nature Metabolism, 2019, 1, 222-235.	5.1	27
223	PKCζ-Regulated Inflammation in the Nonhematopoietic Compartment Is Critical for Obesity-Induced Glucose Intolerance. Cell Metabolism, 2010, 12, 65-77.	7.2	26
224	G-Protein Coupled Receptor 83 (GPR83) Signaling Determined by Constitutive and Zinc(II)-Induced Activity. PLoS ONE, 2013, 8, e53347.	1.1	26
225	Single-Molecule Combinatorial Therapeutics for Treating Obesity and Diabetes. Diabetes, 2017, 66, 1766-1769.	0.3	25
226	Activated macrophages control human adipocyte mitochondrial bioenergetics via secreted factors. Molecular Metabolism, 2017, 6, 1226-1239.	3.0	25
227	Time-resolved hypothalamic open flow micro-perfusion reveals normal leptin transport across the blood–brain barrier in leptin resistant mice. Molecular Metabolism, 2018, 13, 77-82.	3.0	25
228	Ablation of Ghrelin O-Acyltransferase Does Not Improve Glucose Intolerance or Body Adiposity in Mice on a Leptin-Deficient ob/ob Background. PLoS ONE, 2013, 8, e61822.	1.1	25
229	Low-carbohydrate high-fat diets in combination with daily exercise in rats: Effects on body weight regulation, body composition and exercise capacity. Physiology and Behavior, 2012, 106, 185-192.	1.0	24
230	CNS-targeting pharmacological interventions for the metabolic syndrome. Journal of Clinical Investigation, 2019, 129, 4058-4071.	3.9	24
231	Uroguanylin: how the gut got another satiety hormone. Journal of Clinical Investigation, 2011, 121, 3384-3386.	3.9	24
232	Letter to the Editor: Similar fasting ghrelin levels in binge eating/purging anorexia nervosa and restrictive anorexia nervosa 1 1The present letter to the Editor has been transmitted to Doctor Muneki Tanaka who has declined the opportunity to respond to it Psychoneuroendocrinology, 2004, 29, 692-693.	1.3	23
233	CNS Opioid Signaling Separates Cannabinoid Receptor 1-Mediated Effects on Body Weight and Mood-Related Behavior in Mice. Endocrinology, 2011, 152, 3661-3667.	1.4	23
234	Ghrelin - A Key Pleiotropic Hormone-Regulating Systemic Energy Metabolism. Endocrine Development, 2013, 25, 91-100.	1.3	23

#	Article	IF	CITATIONS
235	Analysis of Human TAAR8 and Murine Taar8b Mediated Signaling Pathways and Expression Profile. International Journal of Molecular Sciences, 2014, 15, 20638-20655.	1.8	23
236	S6K1 controls pancreatic \hat{l}^2 cell size independently of intrauterine growth restriction. Journal of Clinical Investigation, 2015, 125, 2736-2747.	3.9	23
237	Effect of Deletion of Ghrelinâ€∢i>Oàê€Acyltransferase on the Pulsatile Release of Growth Hormone in Mice. Journal of Neuroendocrinology, 2015, 27, 872-886.	1.2	22
238	Lowâ€carbohydrate Highâ€fat Diets: Regulation of Energy Balance and Body Weight Regain in Rats. Obesity, 2009, 17, 283-289.	1.5	21
239	Decreased glucose tolerance and plasma adiponectin:resistin ratio in a mouse model of post-traumatic stress disorder. Diabetologia, 2011, 54, 900-909.	2.9	21
240	Acute administration of acyl, but not desacyl ghrelin, decreases blood pressure in healthy humans. European Journal of Endocrinology, 2017, 176, 123-132.	1.9	21
241	The scaffold protein p62 regulates adaptive thermogenesis through ATF2 nuclear target activation. Nature Communications, 2020, 11 , 2306.	5.8	21
242	Insights into incretin-based therapies for treatment of diabetic dyslipidemia. Advanced Drug Delivery Reviews, 2020, 159, 34-53.	6.6	21
243	The Triple Uptake Inhibitor (1 <i>R</i> ,5 <i>S</i>)-(+)-1-(3,4-Dichlorophenyl)-3-azabicyclo[3.1.0] Hexane Hydrochloride (DOV 21947) Reduces Body Weight and Plasma Triglycerides in Rodent Models of Diet-Induced Obesity. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 1111-1126.	1.3	20
244	Metabolic Control by S6 Kinases Depends on Dietary Lipids. PLoS ONE, 2012, 7, e32631.	1.1	20
245	Current and Emerging Treatment Options in Diabetes Care. Handbook of Experimental Pharmacology, 2015, 233, 437-459.	0.9	20
246	Dietary sugars: a fat difference. Journal of Clinical Investigation, 2009, 119, 1089-1092.	3.9	20
247	Peptide YY release in anorectic patients after liquid meal. Appetite, 2007, 48, 301-304.	1.8	19
248	Central nervous system regulation of adipocyte metabolism. Regulatory Peptides, 2008, 149, 26-31.	1.9	19
249	GLP-1R Agonism Enhances Adjustable Gastric Banding in Diet-Induced Obese Rats. Diabetes, 2013, 62, 3261-3267.	0.3	19
250	Determination of thyroid hormones in mouse tissues by isotope-dilution microflow liquid chromatography–mass spectrometry method. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1033-1034, 413-420.	1.2	19
251	Exploration of Energy Metabolism in the Mouse Using Indirect Calorimetry: Measurement of Daily Energy Expenditure (DEE) and Basal Metabolic Rate (BMR). Current Protocols in Mouse Biology, 2015, 5, 205-222.	1.2	19
252	A Sweet Spot for the Bariatric Surgeon. Cell Metabolism, 2008, 8, 177-179.	7.2	18

#	Article	IF	CITATIONS
253	Morning ghrelin concentrations are not affected by short-term overfeeding and do not predict ad libitum food intake in humans. American Journal of Clinical Nutrition, 2009, 89, 801-806.	2.2	18
254	Ghrelin-induced hypothermia: A physiological basis but no clinical risk. Physiology and Behavior, 2011, 105, 43-51.	1.0	18
255	Epigenetic ON/OFF Switches for Obesity. Cell, 2016, 164, 341-342.	13.5	18
256	Optimization of peptide-based polyagonists for treatment of diabetes and obesity. Bioorganic and Medicinal Chemistry, 2018, 26, 2873-2881.	1.4	18
257	A BAFF/APRIL axis regulates obesogenic diet-driven weight gain. Nature Communications, 2021, 12, 2911.	5.8	17
258	Type 2 diabetes risk gene Dusp8 regulates hypothalamic Jnk signaling and insulin sensitivity. Journal of Clinical Investigation, 2020, 130, 6093-6108.	3.9	17
259	NO to Obesity: Does Nitric Oxide Regulate Fat Oxidation and Insulin Sensitivity?. Endocrinology, 2007, 148, 4545-4547.	1.4	16
260	Acylation Type Determines Ghrelin's Effects on Energy Homeostasis in Rodents. Endocrinology, 2012, 153, 4687-4695.	1.4	16
261	The HPA axis modulates the CNS melanocortin control of liver triacylglyceride metabolism. Physiology and Behavior, 2012, 105, 791-799.	1.0	16
262	Emerging Function of Fat Mass and Obesity-Associated Protein (Fto). PLoS Genetics, 2013, 9, e1003223.	1.5	15
263	The hypothalamic neural–glial network and the metabolic syndrome. Best Practice and Research in Clinical Endocrinology and Metabolism, 2014, 28, 661-671.	2.2	15
264	Short-term cold exposure supports human Treg induction inÂvivo. Molecular Metabolism, 2019, 28, 73-82.	3.0	15
265	GLP-1/dexamethasone inhibits food reward without inducing mood and memory deficits in mice. Neuropharmacology, 2019, 151, 55-63.	2.0	15
266	Cajal revisited: does the VMH make us fat?. Nature Neuroscience, 2011, 14, 806-808.	7.1	14
267	Ghrelin in the Control of Energy, Lipid, and Glucose Metabolism. Methods in Enzymology, 2012, 514, 249-260.	0.4	13
268	Endothelial HIF-1α Enables Hypothalamic Glucose Uptake to Drive POMC Neurons. Diabetes, 2017, 66, 1511-1520.	0.3	13
269	An incretin-based tri-agonist promotes superior insulin secretion from murine pancreatic islets via PLC activation. Cellular Signalling, 2018, 51, 13-22.	1.7	13
270	Ghrelin Stimulation of Growth Hormone Isoforms: Parallel Secretion of Total and 20-kDa Growth Hormone and Relation to Insulin Sensitivity in Healthy Humans. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 3366-3374.	1.8	12

#	Article	IF	Citations
271	Metabolic Precision Medicines: Curing POMC Deficiency. Cell Metabolism, 2016, 24, 194-195.	7.2	12
272	Plasma proteome profiles treatment efficacy of incretin dual agonism in dietâ€induced obese female and male mice. Diabetes, Obesity and Metabolism, 2021, 23, 195-207.	2.2	12
273	Diet triggers specific responses of hypothalamic astrocytes in time and region dependent manner. Glia, 2022, 70, 2062-2078.	2.5	12
274	Play down protein to play up metabolism?. Journal of Clinical Investigation, 2014, 124, 3691-3693.	3.9	11
275	Dual specificity phosphatase 6 deficiency is associated with impaired systemic glucose tolerance and reversible weight retardation in mice. PLoS ONE, 2017, 12, e0183488.	1.1	10
276	The intestinal lymph fistula model—a novel approach to study ghrelin secretion. American Journal of Physiology - Renal Physiology, 2010, 298, G474-G480.	1.6	9
277	The extracellular N-terminal domain of G-protein coupled receptor 83 regulates signaling properties and is an intramolecular inverse agonist. BMC Research Notes, 2014, 7, 913.	0.6	9
278	Diversification and coevolution of the ghrelin/growth hormone secretagogue receptor system in vertebrates. Ecology and Evolution, 2016, 6, 2516-2535.	0.8	9
279	Age-dependent membrane release and degradation of full-length glycosylphosphatidylinositol-anchored proteins in rats. Mechanisms of Ageing and Development, 2020, 190, 111307.	2.2	9
280	Pharmacological targeting of $\hat{l}\pm3\hat{l}^24$ nicotinic receptors improves peripheral insulin sensitivity in mice with diet-induced obesity. Diabetologia, 2020, 63, 1236-1247.	2.9	9
281	Obesity is associated with hypothalamic injury in rodents and humans. Journal of Clinical Investigation, 2012, 122, 778-778.	3.9	9
282	The brain is getting ready for dinner. Cell Metabolism, 2006, 4, 257-258.	7.2	8
283	Ghrelin receptor deficiency does not affect diet-induced atherosclerosis in low-density lipoprotein receptor-null mice. Frontiers in Endocrinology, 2011, 2, 67.	1.5	8
284	Metabolomic linkage reveals functional interaction between glucose-dependent insulinotropic polypeptide and ghrelin in humans. American Journal of Physiology - Endocrinology and Metabolism, 2011, 301, E608-E617.	1.8	8
285	Carbohydrate Content of Post-operative Diet Influences the Effect of Vertical Sleeve Gastrectomy on Body Weight Reduction in Obese Rats. Obesity Surgery, 2012, 22, 140-151.	1.1	8
286	[Br]eaking FAt. Cell, 2014, 159, 238-240.	13.5	8
287	Obesity: will withaferin win the war?. Nature Medicine, 2016, 22, 970-971.	15.2	8
288	A Synaptic Basis for GLP-1 Action in the Brain. Neuron, 2017, 96, 713-715.	3.8	8

#	Article	IF	CITATIONS
289	Diet-Induced Leptin Resistance: The Heart of the Matter. Endocrinology, 2007, 148, 921-923.	1.4	7
290	Opposing Effects of Antidiabetic Interventions on Malignant Growth and Metastasis. Cell Metabolism, 2016, 23, 959-960.	7.2	7
291	Emerging Polyâ€Agonists for Obesity and Type 2 Diabetes. Obesity, 2017, 25, 1647-1649.	1.5	7
292	Circulating HDL levels control hypothalamic astrogliosis via apoA-I. Journal of Lipid Research, 2018, 59, 1649-1659.	2.0	7
293	Peptide YY: obesity's cause and cure?. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E1131-E1133.	1.8	6
294	Action Profile of the Antiobesity Drug Candidate Oleoylâ€Estrone in Rats. Obesity, 2010, 18, 2260-2267.	1.5	6
295	Role of adipose and hepatic atypical protein kinase C lambda (PKCλ) in the development of obesity and glucose intolerance. Adipocyte, 2012, 1, 203-214.	1.3	6
296	Nutropioids, Hedonism in the Gut?. Cell Metabolism, 2012, 16, 137-139.	7.2	6
297	Fat controls U. Science, 2017, 355, 1124-1125.	6.0	6
298	Pirt deficiency has subtle female-specific effects on energy and glucose metabolism in mice. Molecular Metabolism, 2019, 23, 75-81.	3.0	6
299	Biomedical Research Goes Viral: Dangers and Opportunities. Cell, 2020, 181, 1189-1193.	13.5	6
300	PYY3–36 "monkeys around―with energy balance. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 288, R358-R359.	0.9	5
301	Gastric $\langle i \rangle O \langle i \rangle$ -acyl transferase activates hunger signal to the brain. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6213-6214.	3.3	5
302	The Pentapeptide RM-131 Promotes Food Intake and Adiposity in Wildtype Mice but Not in Mice Lacking the Ghrelin Receptor. Frontiers in Nutrition, 2014 , 1 , 31 .	1.6	5
303	Calcineurin A beta deficiency ameliorates HFD-induced hypothalamic astrocytosis in mice. Journal of Neuroinflammation, 2018, 15, 35.	3.1	5
304	Twice the benefits with twincretins?. Lancet, The, 2018, 392, 2142-2144.	6.3	5
305	The Iminosugar AMP-DNM Improves Satiety and Activates Brown Adipose Tissue Through GLP1. Diabetes, 2019, 68, 2223-2234.	0.3	5
306	Dusp8 affects hippocampal size and behavior in mice and humans. Scientific Reports, 2019, 9, 19483.	1.6	5

#	Article	IF	CITATIONS
307	The role of ghrelin-octanoyl-acyl-transferase in thermoregulation. Journal of Endocrinological Investigation, 2013, 36, 180-4.	1.8	5
308	Autonomic MC Sets the Metabolic Tone. Cell Metabolism, 2011, 13, 121-123.	7.2	4
309	Gender-specific effects on food intake but no inhibition of age-related fat accretion in transgenic mice overexpressing human IGFBP-2 lacking the Cardin-Weintraub sequence motif. Journal of Cell Communication and Signaling, 2015, 9, 143-150.	1.8	4
310	Combination cannabinoid and opioid receptor antagonists improves metabolic outcomes in obese mice. Molecular and Cellular Endocrinology, 2015, 417, 10-19.	1.6	4
311	Gut Peptide Agonism in the Treatment of Obesity and Diabetes. , 2019, 10, 99-124.		4
312	Correlation guided Network Integration (CoNI) reveals novel genes affecting hepatic metabolism. Molecular Metabolism, 2021, 53, 101295.	3.0	4
313	Gastrointestinal signalling peptides in obesity. Drug Discovery Today Disease Mechanisms, 2006, 3, 463-470.	0.8	3
314	Coupled with uncouplers: the curious case of lifespan. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E619-E620.	1.8	3
315	Neural regulation of cholesterol metabolism. Current Opinion in Lipidology, 2011, 22, 283-287.	1.2	3
316	Once Blind, Now We See GLP-1 Molecular Action. Cell Metabolism, 2017, 26, 289-291.	7.2	3
317	CNS regulation of plasma cholesterol. Annals of Medicine, 2012, 44, 656-663.	1.5	2
318	Welcome to molecular metabolism!. Molecular Metabolism, 2012, 1, 1.	3.0	2
319	Pharmacological Treatment of Obesity. , 2012, , 203-225.		2
320	Ghrelin., 2013,, 1104-1110.		2
321	Hypothalamic Injury: Fish Oil to the Rescue!. Diabetes, 2016, 65, 551-553.	0.3	2
322	Diabetes type 2 risk gene Dusp8 is associated with altered sucrose reward behavior in mice and humans. Brain and Behavior, 2021, 11, e01928.	1.0	2
323	Control of Systemic Metabolism by Astrocytes in the Brain. Masterclass in Neuroendocrinology, 2021, , 127-153.	0.1	1
324	The emerging neurobiology of calorie addiction. ELife, 2014, 3, e01928.	2.8	1

#	Article	IF	CITATIONS
325	The 1D1 of Burning Calories. Obesity Facts, 2008, 1, 223-226.	1.6	0
326	Gut-Brain Communication in the Regulation of System Metabolism. Else-Kröner-Fresenius-Symposia, 2013, , 96-102.	0.1	0