João Paulo L Franco Cairo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4666894/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding the cellulolytic system of Trichoderma harzianum P49P11 and enhancing saccharification of pretreated sugarcane bagasse by supplementation with pectinase and α-l-arabinofuranosidase. Bioresource Technology, 2013, 131, 500-507.	9.6	81
2	Structure and Function of a Novel Cellulase 5 from Sugarcane Soil Metagenome. PLoS ONE, 2013, 8, e83635.	2.5	59
3	Xylooligosaccharides production from a sugarcane biomass mixture: Effects of commercial enzyme combinations on bagasse/straw hydrolysis pretreated using different strategies. Food Research International, 2020, 128, 108702.	6.2	42
4	Functional characterization and target discovery of glycoside hydrolases from the digestome of the lower termite Coptotermes gestroi. Biotechnology for Biofuels, 2011, 4, 50.	6.2	34
5	Development and Biotechnological Application of a Novel Endoxylanase Family GH10 Identified from Sugarcane Soil Metagenome. PLoS ONE, 2013, 8, e70014.	2.5	28
6	Deciphering the synergism of endogenous glycoside hydrolase families 1 and 9 from Coptotermes gestroi. Insect Biochemistry and Molecular Biology, 2013, 43, 970-981.	2.7	27
7	The Coptotermes gestroi aldo–keto reductase: a multipurpose enzyme for biorefinery applications. Biotechnology for Biofuels, 2017, 10, 4.	6.2	27
8	Expanding the Knowledge on Lignocellulolytic and Redox Enzymes of Worker and Soldier Castes from the Lower Termite Coptotermes gestroi. Frontiers in Microbiology, 2016, 7, 1518.	3.5	26
9	Recombinant Trichoderma harzianum endoglucanase I (Cel7B) is a highly acidic and promiscuous carbohydrate-active enzyme. Applied Microbiology and Biotechnology, 2015, 99, 9591-9604.	3.6	25
10	Mapping N-linked glycosylation of carbohydrate-active enzymes in the secretome of Aspergillus nidulans grown on lignocellulose. Biotechnology for Biofuels, 2016, 9, 168.	6.2	25
11	Novel redox-active enzymes for ligninolytic applications revealed from multiomics analyses of Peniophora sp. CBMAI 1063, a laccase hyper-producer strain. Scientific Reports, 2019, 9, 17564.	3.3	24
12	The characterization of a thermostable and cambialistic superoxide dismutase from <i>Thermus filiformis</i> . Letters in Applied Microbiology, 2013, 57, 40-46.	2.2	23
13	Biochemical and biophysical properties of a metagenome-derived GH5 endoglucanase displaying an unconventional domain architecture. International Journal of Biological Macromolecules, 2017, 99, 384-393.	7.5	22
14	Enzymatic removal of inhibitory compounds from lignocellulosic hydrolysates for biomass to bioproducts applications. World Journal of Microbiology and Biotechnology, 2020, 36, 166.	3.6	21
15	On the roles of AA15 lytic polysaccharide monooxygenases derived from the termite Coptotermes gestroi. Journal of Inorganic Biochemistry, 2021, 216, 111316.	3.5	16
16	A Novel Member of GH16 Family Derived from Sugarcane Soil Metagenome. Applied Biochemistry and Biotechnology, 2015, 177, 304-317.	2.9	14
17	Microbial Communities of the Gut and Nest of the Humus- and Litter-Feeding Termite Procornitermes araujoi (Syntermitinae). Current Microbiology, 2018, 75, 1609-1618.	2.2	13
18	Food Storage by the Savanna Termite Cornitermes cumulans (Syntermitinae): a Strategy to Improve Hemicellulose Digestibility?. Microbial Ecology, 2018, 76, 492-505.	2.8	12

#	Article	IF	CITATIONS
19	Eucalyptus Cell Wall Architecture: Clues for Lignocellulosic Biomass Deconstruction. Bioenergy Research, 2016, 9, 969-979.	3.9	10
20	Microbial enrichment and meta-omics analysis identify CAZymes from mangrove sediments with unique properties. Enzyme and Microbial Technology, 2021, 148, 109820.	3.2	9
21	Flavonoid supplementation affects the expression of genes involved in cell wall formation and lignification metabolism and increases sugar content and saccharification in the fast-growing eucalyptus hybrid E. urophylla x E. grandis. BMC Plant Biology, 2014, 14, 301.	3.6	8
22	Oxidative cleavage of polysaccharides by a termite-derived <i>superoxide dismutase</i> boosts the degradation of biomass by glycoside hydrolases. Green Chemistry, 2022, 24, 4845-4858.	9.0	7
23	A novel mechanism of \hat{l}^2 -glucosidase stimulation through a monosaccharide binding-induced conformational change. International Journal of Biological Macromolecules, 2021, 166, 1188-1196.	7.5	5
24	The periplasmic expression and purification of AA15 lytic polysaccharide monooxygenases from insect species in Escherichia coli. Protein Expression and Purification, 2022, 190, 105994.	1.3	2
25	Deletion of AA9 Lytic Polysaccharide Monooxygenases Impacts A. nidulans Secretome and Growth on Lignocellulose. Microbiology Spectrum, 2022, 10, .	3.0	2