Grover P Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/46666672/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Meloxicam methyl group determines enzyme specificity for thiazole bioactivation compared to sudoxicam. Toxicology Letters, 2021, 338, 10-20.	0.4	12
2	Novel advances in biotransformation and bioactivation research – 2020 year in review. Drug Metabolism Reviews, 2021, 53, 384-433.	1.5	4
3	Bioactivation of Isoxazole-Containing Bromodomain and Extra-Terminal Domain (BET) Inhibitors. Metabolites, 2021, 11, 390.	1.3	3
4	Impacts of diphenylamine NSAID halogenation on bioactivation risks. Toxicology, 2021, 458, 152832.	2.0	5
5	4-Methyl-1,2,3-Triazoles as <i>N</i> -Acetyl-Lysine Mimics Afford Potent BET Bromodomain Inhibitors with Improved Selectivity. Journal of Medicinal Chemistry, 2021, 64, 10497-10511.	2.9	22
6	Machine learning liver-injuring drug interactions with non-steroidal anti-inflammatory drugs (NSAIDs) from a retrospective electronic health record (EHR) cohort. PLoS Computational Biology, 2021, 17, e1009053.	1.5	33
7	Significance of Multiple Bioactivation Pathways for Meclofenamate as Revealed through Modeling and Reaction Kinetics. Drug Metabolism and Disposition, 2021, 49, 133-141.	1.7	7
8	CYP2C9 and 3A4 play opposing roles in bioactivation and detoxification of diphenylamine NSAIDs. Biochemical Pharmacology, 2021, 194, 114824.	2.0	5
9	Discovery of Novel Reductive Elimination Pathway for 10-Hydroxywarfarin. Frontiers in Pharmacology, 2021, 12, 805133.	1.6	1
10	P151 - Bioactivation of halogenated aromatic drugs into quinone metabolites as precursors to drug-induced hepatotoxicity. Drug Metabolism and Pharmacokinetics, 2020, 35, S68.	1.1	0
11	Significance of Competing Metabolic Pathways for 5F-APINACA Based on Quantitative Kinetics. Molecules, 2020, 25, 4820.	1.7	2
12	Novel advances in biotransformation and bioactivation research—2019 year in review. Drug Metabolism Reviews, 2020, 52, 333-365.	1.5	5
13	Dual mechanisms suppress meloxicam bioactivation relative to sudoxicam. Toxicology, 2020, 440, 152478.	2.0	16
14	A Time-Embedding Network Models the Ontogeny of 23 Hepatic Drug Metabolizing Enzymes. Chemical Research in Toxicology, 2019, 32, 1707-1721.	1.7	6
15	Comprehensive kinetic and modeling analyses revealed CYP2C9 and 3A4 determine terbinafine metabolic clearance and bioactivation. Biochemical Pharmacology, 2019, 170, 113661.	2.0	13
16	Biotransformation and bioactivation reactions – 2018 literature highlights. Drug Metabolism Reviews, 2019, 51, 121-161.	1.5	6
17	CYP2C19 and 3A4 Dominate Metabolic Clearance and Bioactivation of Terbinafine Based on Computational and Experimental Approaches. Chemical Research in Toxicology, 2019, 32, 1151-1164.	1.7	12
18	Regioselectivity significantly impacts microsomal glucuronidation efficiency of R/S-6, 7-, and 8-hydroxywarfarin. Xenobiotica, 2019, 49, 397-403.	0.5	4

GROVER P MILLER

#	Article	IF	CITATIONS
19	Computationally Assessing the Bioactivation of Drugs by N-Dealkylation. Chemical Research in Toxicology, 2018, 31, 68-80.	1.7	30
20	Novel isomeric metabolite profiles correlate with warfarin metabolism phenotype during maintenance dosing in a pilot study of 29 patients. Blood Coagulation and Fibrinolysis, 2018, 29, 602-612.	0.5	4
21	Biotransformation and bioactivation reactions – 2017 literature highlights. Drug Metabolism Reviews, 2018, 50, 221-255.	1.5	9
22	Lamisil (terbinafine) toxicity: Determining pathways to bioactivation through computational and experimental approaches. Biochemical Pharmacology, 2018, 156, 10-21.	2.0	17
23	1,3-Butadiene-induced mitochondrial dysfunction is correlated with mitochondrial CYP2E1 activity in Collaborative Cross mice. Toxicology, 2017, 378, 114-124.	2.0	18
24	Computational Approach to Structural Alerts: Furans, Phenols, Nitroaromatics, and Thiophenes. Chemical Research in Toxicology, 2017, 30, 1046-1059.	1.7	32
25	Toxicological implications of mitochondrial localization of CYP2E1. Toxicology Research, 2017, 6, 273-289.	0.9	21
26	Stereospecific Metabolism ofR- andS-Warfarin by Human Hepatic Cytosolic Reductases. Drug Metabolism and Disposition, 2017, 45, 1000-1007.	1.7	12
27	Modeling Reactivity to Biological Macromolecules with a Deep Multitask Network. ACS Central Science, 2016, 2, 529-537.	5.3	76
28	Kynurenine Signaling Increases DNA Polymerase Kappa Expression and Promotes Genomic Instability in Glioblastoma Cells. Chemical Research in Toxicology, 2016, 29, 101-108.	1.7	27
29	Cooperativity in CYP2E1 metabolism of acetaminophen and styrene mixtures. Biochemical Pharmacology, 2015, 97, 341-349.	2.0	12
30	Modeling Epoxidation of Drug-like Molecules with a Deep Machine Learning Network. ACS Central Science, 2015, 1, 168-180.	5.3	130
31	Site of Reactivity Models Predict Molecular Reactivity of Diverse Chemicals with Clutathione. Chemical Research in Toxicology, 2015, 28, 797-809.	1.7	70
32	Subcellular localization of rat CYP2E1 impacts metabolic efficiency toward common substrates. Toxicology, 2015, 338, 47-58.	2.0	18
33	Structural basis for cooperative binding of azoles to CYP2E1 as interpreted through guided molecular dynamics simulations. Journal of Molecular Graphics and Modelling, 2015, 56, 43-52.	1.3	14
34	Inhibitory potency of 4-carbon alkanes and alkenes toward CYP2E1 activity. Toxicology, 2014, 318, 51-58.	2.0	7
35	CYP2E1 hydroxylation of aniline involves negative cooperativity. Biochemical Pharmacology, 2014, 87, 523-533.	2.0	23
36	Multiple UDP-glucuronosyltransferases in human liver microsomes glucuronidate both R- and S-7-hydroxywarfarin into two metabolites. Archives of Biochemistry and Biophysics, 2014, 564, 244-253.	1.4	8

GROVER P MILLER

#	Article	IF	CITATIONS
37	Differences in butadiene adduct formation between rats and mice not due to selective inhibition of CYP2E1 by butadiene metabolites. Toxicology Letters, 2013, 223, 221-227.	0.4	4
38	Cooperative effects for CYP2E1 differ between styrene and its metabolites. Xenobiotica, 2013, 43, 755-764.	0.5	10
39	Structure of pyrazole derivatives impact their affinity, stoichiometry, and cooperative interactions for CYP2E1 complexes. Archives of Biochemistry and Biophysics, 2013, 537, 12-20.	1.4	14
40	Erratum to "Novel multi-mode ultra performance liquid chromatography–tandem mass spectrometry assay for profiling enantiomeric hydroxywarfarins and warfarin in human plasma―[J. Chromatogr. B 879 (2011) 1056–1062]. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2013, 919-920, 61.	1.2	0
41	Predicting CYP2C19 catalytic parameters for enantioselective oxidations using artificial neural networks and a chirality code. Bioorganic and Medicinal Chemistry, 2013, 21, 3749-3759.	1.4	8
42	CYP2E1 substrate inhibition. MECHANISTIC INTERPRETATION THROUGH AN EFFECTOR SITE FOR MONOCYCLIC COMPOUNDS Journal of Biological Chemistry, 2013, 288, 32640.	1.6	0
43	Metabolism of R- and S-Warfarin by CYP2C19 into Four Hydroxywarfarins. Drug Metabolism Letters, 2013, 6, 157-164.	0.5	36
44	CYP2E1 Metabolism of Styrene Involves Allostery. Drug Metabolism and Disposition, 2012, 40, 1976-1983.	1.7	19
45	The Role of ERp44 in Maturation of Serotonin Transporter Protein. Journal of Biological Chemistry, 2012, 287, 17801-17811.	1.6	21
46	Novel multi-mode ultra performance liquid chromatography–tandem mass spectrometry assay for profiling enantiomeric hydroxywarfarins and warfarin in human plasma. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 1056-1062.	1.2	41
47	Assays and applications in warfarin metabolism: what we know, how we know it and what we need to know. Expert Opinion on Drug Metabolism and Toxicology, 2011, 7, 857-874.	1.5	22
48	Contribution of Three CYP3A Isoforms to Metabolism of R- and S-Warfarin. Drug Metabolism Letters, 2010, 4, 213-219.	0.5	16
49	Beta sheet 2–alpha helix C loop of cytochrome P450 reductase serves as a docking site for redox partners. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1285-1293.	1.1	21
50	Hydroxywarfarin Metabolites Potently Inhibit CYP2C9 Metabolism of S-Warfarin. Chemical Research in Toxicology, 2010, 23, 939-945.	1.7	35
51	Warfarin and UDP-glucuronosyltransferases: writing a new chapter of metabolism. Drug Metabolism Reviews, 2010, 42, 55-61.	1.5	24
52	Characterization of Human Hepatic and Extrahepatic UDP-Glucuronosyltransferase Enzymes Involved in the Metabolism of Classic Cannabinoids. Drug Metabolism and Disposition, 2009, 37, 1496-1504.	1.7	129
53	Assessing Cytochrome P450 and UDP-Glucuronosyltransferase Contributions to Warfarin Metabolism in Humans. Chemical Research in Toxicology, 2009, 22, 1239-1245.	1.7	41
54	Comparative characterization of UDPâ€glucuronic acid (UDPâ€GlcUA) bindingâ€site directed inhibitors with human UGT2B7 and 1A10 FASEB Journal, 2009, 23, 750.4.	0.2	0

GROVER P MILLER

#	Article	IF	CITATIONS
55	The glucuronidation of native and oxidized estrogens can be effectively inhibited by compounds structurally related to UDPâ€glucuronic acid in human recombinant UGT1A10. FASEB Journal, 2009, 23, 750.2.	0.2	1
56	Characterization of mutation in the 395 DQxD 398 motif of the glucuronic acid binding site in human UGT1A6: Comparison to UGT1A10. FASEB Journal, 2009, 23, 750.5.	0.2	0
57	Identification of Hydroxywarfarin Binding Site in Human UDP Glucuronosyltransferase 1A10: Phenylalanine90 Is Crucial for the Glucuronidation of 6- and 7-Hydroxywarfarin but Not 8-Hydroxywarfarin. Drug Metabolism and Disposition, 2008, 36, 2211-2218.	1.7	13
58	CYP2E1 Substrate Inhibition. Journal of Biological Chemistry, 2008, 283, 3487-3496.	1.6	64
59	The First Aspartic Acid of the DQxD Motif for Human UDP-Glucuronosyltransferase 1A10 Interacts with UDP-Glucuronic Acid during Catalysis. Drug Metabolism and Disposition, 2008, 36, 517-522.	1.7	16
60	Glucuronidation of Monohydroxylated Warfarin Metabolites by Human Liver Microsomes and Human Recombinant UDP-Glucuronosyltransferases. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 139-148.	1.3	39
61	Advances in the interpretation and prediction of CYP2E1 metabolism from a biochemical perspective. Expert Opinion on Drug Metabolism and Toxicology, 2008, 4, 1053-1064.	1.5	29
62	CYP2E1 active site residues in substrate recognition sequence 5 identified by photoaffinity labeling and homology modeling. Archives of Biochemistry and Biophysics, 2007, 459, 59-69.	1.4	24
63	Global Analysis of Proteinâ^'Protein Interactions Reveals Multiple CYP2E1â^'Reductase Complexes. Biochemistry, 2007, 46, 10192-10201.	1.2	31
64	Formation of Multiple CYP2E1 Complexes Affects Activity. FASEB Journal, 2006, 20, A460.	0.2	0
65	Thermal inactivation of the reductase domain of cytochrome P450 BM3. Archives of Biochemistry and Biophysics, 2005, 439, 165-174.	1.4	15
66	Oxidation of Methoxyphenethylamines by Cytochrome P450 2D6. Journal of Biological Chemistry, 2002, 277, 33711-33719.	1.6	54
67	Diversity in the Oxidation of Substrates by Cytochrome P450 2D6:Â Lack of an Obligatory Role of Aspartate 301â^Substrate Electrostatic Bondingâ€. Biochemistry, 2002, 41, 11025-11034.	1.2	69
68	Binding and Oxidation of Alkyl 4-Nitrophenyl Ethers by Rabbit Cytochrome P450 1A2:Â Evidence for Two Binding Sitesâ€. Biochemistry, 2001, 40, 7262-7272.	1.2	64
69	Oxidation of Phenethylamine Derivatives by Cytochrome P450 2D6:  The Issue of Substrate Protonation in Binding and Catalysis. Biochemistry, 2001, 40, 14215-14223.	1.2	37
70	Oxidations ofp-Alkoxyacylanilides Catalyzed by Human Cytochrome P450 1A2: Structureâ^'Activity Relationships and Simulation of Rate Constants of Individual Steps in Catalysisâ€. Biochemistry, 2001, 40, 4521-4530.	1.2	41
71	Rate-Determining Steps in Phenacetin Oxidations by Human Cytochrome P450 1A2 and Selected Mutants. Biochemistry, 2000, 39, 11319-11329.	1.2	135
72	Elucidation of Distinct Ligand Binding Sites for Cytochrome P450 3A4. Biochemistry, 2000, 39, 5929-5939.	1.2	232