
Andrea Dorigato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4666623/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrically conductive nanocomposites for fused deposition modelling. Synthetic Metals, 2017, 226, 7-14.	2.1	139
2	Filler aggregation as a reinforcement mechanism in polymer nanocomposites. Mechanics of Materials, 2013, 61, 79-90.	1.7	119
3	Linear low-density polyethylene/silica micro- and nanocomposites: dynamic rheological measurements and modelling. EXPRESS Polymer Letters, 2010, 4, 115-129.	1.1	101
4	Fatigue resistance of basalt fibers-reinforced laminates. Journal of Composite Materials, 2012, 46, 1773-1785.	1.2	97
5	Highly porous polycaprolactone-45S5 Bioglass® scaffolds for bone tissue engineering. Composites Science and Technology, 2010, 70, 1869-1878.	3.8	90
6	Tensile mechanical response of polyethylene – clay nanocomposites. EXPRESS Polymer Letters, 2007, 1, 123-131.	1.1	89
7	Effect of Silica Nanoparticles on the Mechanical Performances of Poly(Lactic Acid). Journal of Polymers and the Environment, 2012, 20, 713-725.	2.4	75
8	Multifunctional epoxy/carbon fiber laminates for thermal energy storage and release. Composites Science and Technology, 2018, 158, 101-111.	3.8	75
9	Effect of nanoclay addition on the fiber/matrix adhesion in epoxy/glass composites. Journal of Composite Materials, 2012, 46, 1439-1451.	1.2	71
10	Improving Epoxy Adhesives with Zirconia Nanoparticles. Composite Interfaces, 2010, 17, 873-892.	1.3	70
11	The effect of filler type and content and the manufacturing process on the performance of multifunctional carbon/poly-lactide composites. Carbon, 2011, 49, 4280-4290.	5.4	69
12	The role of alumina nanoparticles in epoxy adhesives. Journal of Nanoparticle Research, 2011, 13, 2429-2441.	0.8	68
13	Contact angle measurements as a tool to investigate the filler–matrix interactions in polyurethane–clay nanocomposites from blocked prepolymer. European Polymer Journal, 2008, 44, 1662-1672.	2.6	66
14	Flexural and impact behaviour of carbon/basalt fibers hybrid laminates. Journal of Composite Materials, 2014, 48, 1121-1130.	1.2	65
15	Polyhydroxyalkanoates/Fibrillated Nanocellulose Composites for Additive Manufacturing. Journal of Polymers and the Environment, 2019, 27, 1333-1341.	2.4	65
16	Thermo-mechanical properties of high density polyethylene – fumed silica nanocomposites: effect of filler surface area and treatment. Journal of Polymer Research, 2012, 19, 1.	1.2	63
17	Fracture behaviour of linear low density polyethylene – fumed silica nanocomposites. Engineering Fracture Mechanics, 2012, 79, 213-224.	2.0	58
18	Wax Confinement with Carbon Nanotubes for Phase Changing Epoxy Blends. Polymers, 2017, 9, 405.	2.0	58

#	Article	IF	CITATIONS
19	3D printable thermoplastic polyurethane blends with thermal energy storage/release capabilities. Materials Today Communications, 2018, 15, 228-235.	0.9	50
20	Recycling of bioplastic waste: A review. Advanced Industrial and Engineering Polymer Research, 2021, 4, 159-177.	2.7	50
21	Thermo-mechanical characterization of epoxy/clay nanocomposites as matrices for carbon/nanoclay/epoxy laminates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 6324-6333.	2.6	48
22	Biodegradable single-polymer composites from polyvinyl alcohol. Colloid and Polymer Science, 2012, 290, 359-370.	1.0	48
23	Multifunctional glass fiber/polyamide composites with thermal energy storage/release capability. EXPRESS Polymer Letters, 2018, 12, 349-364.	1.1	48
24	Thermal stability of high density polyethylene–fumed silica nanocomposites. Journal of Thermal Analysis and Calorimetry, 2012, 109, 863-873.	2.0	46
25	Highâ€density polyethylene reinforced with submicron titania particles. Polymer Engineering and Science, 2008, 48, 448-457.	1.5	45
26	Tensile creep behaviour of polymethylpentene–silica nanocomposites. Polymer International, 2010, 59, 719-724.	1.6	43
27	Nonlinear tensile creep of linear low density polyethylene/fumed silica nanocomposites: Time-strain superposition and creep prediction. Polymer Composites, 2010, 31, 1947-1955.	2.3	43
28	Novel reactive thermoplastic resin as a matrix for laminates containing phase change microcapsules. Polymer Composites, 2019, 40, 3711-3724.	2.3	42
29	Linear low density polyethylene/cycloolefin copolymer blends. EXPRESS Polymer Letters, 2011, 5, 23-37.	1.1	41
30	Chain extension behavior and thermo-mechanical properties of polyamide 6 chemically modified with 1,1′-carbonyl-bis-caprolactam. Polymer Engineering and Science, 2014, 54, 158-165.	1.5	40
31	Phase changing nanocomposites for low temperature thermal energy storage and release. EXPRESS Polymer Letters, 2017, 11, 738-752.	1.1	37
32	Monitoring the mechanical behavior under ramp and creep conditions of electrically conductive polymer composites. Composites Part A: Applied Science and Manufacturing, 2012, 43, 1285-1292.	3.8	36
33	Improving the creep stability of high-density polyethylene with acicular titania nanoparticles. Journal of Applied Polymer Science, 2009, 112, 1045-1055.	1.3	35
34	Physical properties of polyhedral oligomeric silsesquioxanes–cycloolefin copolymer nanocomposites. Journal of Applied Polymer Science, 2009, 114, 2270-2279.	1.3	35
35	E: Food Engineering & Physical Properties. Effect of Supercritical Carbon Dioxide Pasteurization on Natural Microbiota, Texture, and Microstructure of Freshâ€Cut Coconut. Journal of Food Science, 2012, 77, E137-43.	1.5	35
36	High performance polyethylene nanocomposite fibers. EXPRESS Polymer Letters, 2012, 6, 954-964.	1.1	35

#	Article	IF	CITATIONS
37	Recycling of polymer blends. Advanced Industrial and Engineering Polymer Research, 2021, 4, 53-69.	2.7	34
38	Monitoring the Mechanical Behaviour of Electrically Conductive Polymer Nanocomposites Under Ramp and Creep Conditions. Journal of Nanoscience and Nanotechnology, 2012, 12, 4093-4102.	0.9	31
39	POLYETHYLENE WAX/EPDM BLENDS AS SHAPE-STABILIZED PHASE CHANGE MATERIALS FOR THERMAL ENERGY STORAGE. Rubber Chemistry and Technology, 2017, 90, 575-584.	0.6	30
40	Application of the thermal energy storage concept to novel epoxy–short carbon fiber composites. Journal of Applied Polymer Science, 2019, 136, 47434.	1.3	30
41	Cycloolefin copolymer/fumed silica nanocomposites. Journal of Applied Polymer Science, 2011, 119, 3393-3402.	1.3	29
42	Ethylene-Producing Bacteria That Ripen Fruit. ACS Synthetic Biology, 2014, 3, 935-938.	1.9	29
43	Thermo-mechanical properties of innovative microcrystalline cellulose filled composites for art protection and restoration. Journal of Materials Science, 2014, 49, 2035-2044.	1.7	29
44	Thermo-Mechanical Behavior of Novel Wood Laminae-Thermoplastic Starch Biodegradable Composites With Thermal Energy Storage/Release Capability. Frontiers in Materials, 2019, 6, .	1.2	29
45	Discontinuous carbon fiber/polyamide composites with microencapsulated paraffin for thermal energy storage. Journal of Applied Polymer Science, 2019, 136, 47408.	1.3	29
46	Tuning thermo-mechanical properties of poly(lactic acid) films through blending with bioderived poly(alkylene furanoate)s with different alkyl chain length for sustainable packaging. Polymer, 2021, 218, 123527.	1.8	29
47	Novel Biobased Polylactic Acid/Poly(pentamethylene 2,5-furanoate) Blends for Sustainable Food Packaging. ACS Sustainable Chemistry and Engineering, 2021, 9, 13742-13750.	3.2	29
48	Development and thermoâ€nechanical behavior of nanocomposite epoxy adhesives. Polymers for Advanced Technologies, 2012, 23, 660-668.	1.6	28
49	Innovative Bio-based Poly(Lactic Acid)/Poly(Alkylene Furanoate)s Fiber Blends for Sustainable Textile Applications. Journal of Polymers and the Environment, 2021, 29, 3948-3963.	2.4	27
50	Detailed experimental and theoretical investigation of the thermomechanical properties of epoxy composites containing paraffin microcapsules for thermal management. Polymer Engineering and Science, 2020, 60, 1202-1220.	1.5	26
51	Thermo-mechanical properties of Polyamide 6 chemically modified by chain extension with Polyamide/Polycarbonate blend. Journal of Polymer Research, 2012, 19, 1.	1.2	25
52	Synergistic effects of carbon black and carbon nanotubes on the electrical resistivity of poly(butyleneâ€ŧerephthalate) nanocomposites. Advances in Polymer Technology, 2018, 37, 1744-1754.	0.8	25
53	Electrically conductive epoxy nanocomposites containing carbonaceous fillers and in-situ generated silver nanoparticles. EXPRESS Polymer Letters, 2013, 7, 673-682.	1.1	22
54	Liquid crystalline polymer nanocomposites reinforced with in-situ reduced graphene oxide. EXPRESS Polymer Letters, 2015, 9, 709-720.	1.1	22

#	Article	IF	CITATIONS
55	Nanofiller Aggregation as Reinforcing Mechanism in Nanocomposites. Procedia Engineering, 2011, 10, 894-899.	1.2	21
56	Dynamic-mechanical response of carbon fiber laminates with a reactive thermoplastic resin containing phase change microcapsules. Mechanics of Time-Dependent Materials, 2020, 24, 395-418.	2.3	20
57	Thermo-mechanical behaviour of Polyamide 6 chain extended with 1,1′-Carbonyl-Bis-Caprolactam and 1,3-Phenylene-Bis-2-Oxazoline. Journal of Polymer Research, 2013, 20, 1.	1.2	19
58	(Re)processing effects on linear low-density polyethylene/silica nanocomposites. Journal of Polymer Research, 2013, 20, 1.	1.2	18
59	Reprocessing effects on polypropylene/silica nanocomposites. Journal of Applied Polymer Science, 2014, 131, .	1.3	18
60	Effect of phase change microcapsules on the thermo-mechanical, fracture and heat storage properties of unidirectional carbon/epoxy laminates. Polymer Testing, 2020, 91, 106747.	2.3	18
61	Effect of the Temperature and of the Drawing Conditions on the Fracture Behaviour of Thermoplastic Starch Films for Packaging Applications. Journal of Polymers and the Environment, 2020, 28, 3244-3255.	2.4	18
62	Thermoplastic Polyurethane Blends With Thermal Energy Storage/Release Capability. Frontiers in Materials, 2018, 5, .	1.2	17
63	Thermal mending in novel epoxy/cyclic olefin copolymer blends. EXPRESS Polymer Letters, 2020, 14, 368-383.	1.1	17
64	Recycling of thermosetting composites for wind blade application. Advanced Industrial and Engineering Polymer Research, 2021, 4, 116-132.	2.7	17
65	Thermoâ€mechanical behavior of polyamide 12—polyamide 66 recycled fiber composites. Polymer Composites, 2011, 32, 786-795.	2.3	16
66	Effect of aramid regenerated fibers on thermo-mechanical behaviour of polyamide 12 composites. Journal of Reinforced Plastics and Composites, 2013, 32, 1243-1256.	1.6	16
67	Lowâ€cycle fatigue behavior of flexible <scp>3D</scp> printed thermoplastic polyurethane blends for thermal energy storage/release applications. Journal of Applied Polymer Science, 2021, 138, 49704.	1.3	16
68	Multifunctionality of Reduced Graphene Oxide in Bioderived Polylactide/Poly(Dodecylene Furanoate) Nanocomposite Films. Molecules, 2021, 26, 2938.	1.7	16
69	Mechanical behaviour of cyclic olefin copolymer/exfoliated graphite nanoplatelets nanocomposites foamed through supercritical carbon dioxide. EXPRESS Polymer Letters, 2016, 10, 977-989.	1.1	16
70	Novel electroactive polyamide 12 based nanocomposites filled with reduced graphene oxide. Polymer Engineering and Science, 2019, 59, 198-205.	1.5	15
71	Temperature Dependent Strain/Damage Monitoring of Glass/Epoxy Composites with Graphene as a Piezoresistive Interphase. Fibers, 2019, 7, 17.	1.8	15
72	Role of Surface-Treated Silica Nanoparticles on the Thermo-Mechanical Behavior of Poly(Lactide). Applied Sciences (Switzerland), 2020, 10, 6731.	1.3	15

#	Article	IF	CITATIONS
73	Cyclic olefin copolymer–silica nanocomposites foams. Journal of Materials Science, 2016, 51, 3907-3916.	1.7	14
74	Novel polyamide 12 based nanocomposites for industrial applications. Journal of Polymer Research, 2017, 24, 1.	1.2	14
75	Shape memory epoxy nanocomposites with carbonaceous fillers and inâ€situ generated silver nanoparticles. Polymer Engineering and Science, 2019, 59, 694-703.	1.5	14
76	Mechanical and Functional Properties of Novel Biobased Poly(decylene-2,5-furanoate)/Carbon Nanotubes Nanocomposite Films. Polymers, 2020, 12, 2459.	2.0	14
77	Si3N4 nanofelts/paraffin composites as novel thermal energy storage architecture. Journal of Materials Science, 2021, 56, 1537-1550.	1.7	14
78	Multifunctional structural composites for thermal energy storage. Multifunctional Materials, 2020, 3, 042001.	2.4	14
79	Effect of the water sorption on the mechanical response of microcrystalline celluloseâ€based composites for art protection and restoration. Journal of Applied Polymer Science, 2014, 131, .	1.3	13
80	Effects of carbonaceous nanofillers on the mechanical and electrical properties of crosslinked poly(cyclooctene). Polymer Engineering and Science, 2017, 57, 537-543.	1.5	13
81	Thermo-electrical behaviour of cyclic olefin copolymer/exfoliated graphite nanoplatelets nanocomposites foamed through supercritical carbon dioxide. Journal of Cellular Plastics, 2019, 55, 263-282.	1.2	13
82	Evaluation of the Role of Devulcanized Rubber on the Thermo-mechanical Properties of Polystyrene. Journal of Polymers and the Environment, 2020, 28, 1737-1748.	2.4	13
83	Sustainable textile fibers of bioderived polylactide/poly(pentamethylene 2, <scp>5â€furanoate</scp>) blends. Journal of Applied Polymer Science, 2022, 139, 51740.	1.3	13
84	Development of eco-sustainable plasters with thermal energy storage capability. Journal of Applied Physics, 2020, 128, 075103.	1.1	12
85	Novel Poly(Caprolactone)/Epoxy Blends by Additive Manufacturing. Materials, 2020, 13, 819.	1.3	12
86	Evaluation of the role of devulcanized rubber on the thermomechanical properties of expanded ethyleneâ€propylene diene monomers composites. Polymer Engineering and Science, 2021, 61, 767-779.	1.5	11
87	Evaluation of the salt leaching method for the production of ethylene propylene diene monomer rubber foams. Polymer Engineering and Science, 2021, 61, 136-153.	1.5	11
88	Cyclic Olefin Copolymer Interleaves for Thermally Mendable Carbon/Epoxy Laminates. Molecules, 2020, 25, 5347.	1.7	10
89	Healable Carbon Fiber-Reinforced Epoxy/Cyclic Olefin Copolymer Composites. Materials, 2020, 13, 2165.	1.3	10
90	NOVEL EPDM/PARAFFIN FOAMS FOR THERMAL ENERGY STORAGE APPLICATIONS. Rubber Chemistry and Technology, 2021, 94, 432-448.	0.6	10

#	Article	lF	CITATIONS
91	Thermophysical Properties of Multifunctional Syntactic Foams Containing Phase Change Microcapsules for Thermal Energy Storage. Polymers, 2021, 13, 1790.	2.0	10
92	Thermal and mechanical behavior of innovative melt-blown fabrics based on polyamide nanocomposites. Journal of Industrial Textiles, 2016, 45, 1504-1515.	1.1	9
93	Polyethylene-based single polymer laminates: Synergistic effects of nanosilica and metal hydroxides. Journal of Reinforced Plastics and Composites, 2019, 38, 62-73.	1.6	9
94	Statistical Modeling and Optimization of the Drawing Process of Bioderived Polylactide/Poly(dodecylene furanoate) Wet-Spun Fibers. Polymers, 2022, 14, 396.	2.0	9
95	Evaluation of the shape memory behavior of a poly(cyclooctene) based nanocomposite device. Polymer Engineering and Science, 2018, 58, 430-437.	1.5	8
96	Optimization of the thermal mending process in epoxy/cyclic olefin copolymer blends. Journal of Applied Polymer Science, 2021, 138, 49937.	1.3	8
97	Evaluating the Multifunctional Performance of Structural Composites for Thermal Energy Storage. Polymers, 2021, 13, 3108.	2.0	8
98	Improving the Thermomechanical Properties of Poly(lactic acid) via Reduced Graphene Oxide and Bioderived Poly(decamethylene 2,5-furandicarboxylate). Materials, 2022, 15, 1316.	1.3	8
99	Innovative microcrystalline cellulose composites as lining adhesives for canvas. Polymer Engineering and Science, 2015, 55, 1349-1354.	1.5	7
100	Coloration properties and chemoâ€rheological characterization of a dioxazine pigmentâ€based monodispersed masterbatch. Journal of Applied Polymer Science, 2015, 132, .	1.3	7
101	Influence of the Processing Parameters on the Dispersion and Coloration Behavior of a Halogenated Copper Phthalocyanineâ€Based Masterbatch. Advances in Polymer Technology, 2018, 37, 778-785.	0.8	7
102	Effect of expandable and expanded graphites on the thermo-mechanical properties of polyamide 11. Journal of Elastomers and Plastics, 2019, 51, 175-190.	0.7	7
103	Thermoâ€mechanical and adhesive properties of polymeric films based on ZnAlâ€hydrotalcite composites for active wound dressings. Polymer Engineering and Science, 2019, 59, E112.	1.5	7
104	Multifunctional polyurethane foams with thermal energy storage/release capability. Journal of Thermal Analysis and Calorimetry, 2022, 147, 297-313.	2.0	7
105	Bioadhesive patches based on carboxymethyl cellulose/polyvinylpyrrolidone/bentonite composites and Soluplus® for skin administration of poorly soluble molecules. Applied Clay Science, 2022, 216, 106377.	2.6	7
106	Ultrathin wood laminae—polyvinyl alcohol biodegradable composites. Polymer Composites, 2018, 39, 1116-1124.	2.3	6
107	Novel phase change materials using thermoplastic composites. AIP Conference Proceedings, 2018, , .	0.3	6
108	Thermal Mending of Electroactive Carbon/Epoxy Laminates Using a Porous Poly(ε-caprolactone) Electrospun Mesh. Polymers, 2021, 13, 2723.	2.0	6

#	Article	IF	CITATIONS
109	Lifetime assessment of high-density polyethylene–silica nanocomposites. Nanomaterials and Nanotechnology, 2019, 9, 184798041984998.	1.2	5
110	Evaluation of the role of carbon nanotubes on the electrical properties of poly(butylene) Tj ETQq0 0 0 rgBT /Over 51, 3-25.	lock 10 Tf 0.7	50 707 Td (t 5
111	Mechanical Behaviour of Multifunctional Epoxy/Hollow Glass Microspheres/Paraffin Microcapsules Syntactic Foams for Thermal Management. Polymers, 2021, 13, 2896.	2.0	5
112	Development of polymeric insulating foams for lowâ€ŧemperature thermal energy storage applications. Journal of Applied Polymer Science, 2022, 139, .	1.3	5
113	Graphene Deposition on Glass Fibers by Triboelectrification. Applied Sciences (Switzerland), 2021, 11, 3123.	1.3	4
114	Salt leaching as a green method for the production of polyethylene foams for thermal energy storage applications. Polymer Engineering and Science, 2022, 62, 1650-1663.	1.5	3
115	Ultrathin Wood Laminae–Thermoplastic Starch Biodegradable Composites. Journal of Renewable Materials, 2017, , .	1.1	2
116	Combined effect of fumed silica and metal hydroxides as fire retardants in PE single-polymer composites. AIP Conference Proceedings, 2018, , .	0.3	1
117	Effects of the extrusion processes on the rheological, chemical, and coloration properties of a copper phthalocyanine-based masterbatch. Journal of Elastomers and Plastics, 2018, 50, 295-311.	0.7	0
118	Special Issue "Investigation of Polymer Nanocomposites' Performance― Molecules, 2022, 27, 1180.	1.7	0