David J Rowlands

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4666244/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Police Powers and Public Assemblies: Learning from the Clapham Common â€~Vigil' during the Covid-19 Pandemic. Policing (Oxford), 2022, 16, 73-94.	0.9	6
2	Development of an ELISA to distinguish between foot-and-mouth disease virus infected and vaccinated animals utilising the viral non-structural protein 3ABC. Journal of Medical Microbiology, 2022, 71, .	0.7	0
3	Development of an Enzyme-Linked Immunosorbent Assay for Detection of the Native Conformation of Enterovirus A71. MSphere, 2022, 7, .	1.3	5
4	Structural insight into Pichia pastoris fatty acid synthase. Scientific Reports, 2021, 11, 9773.	1.6	10
5	An Engineered Maturation Cleavage Provides a Recombinant Mimic of Foot-and-Mouth Disease Virus Capsid Assembly-Disassembly. Life, 2021, 11, 500.	1.1	5
6	Functional advantages of triplication of the 3B coding region of the FMDV genome. FASEB Journal, 2021, 35, e21215.	0.2	8
7	Comparative Molecular Biology Approaches for the Production of Poliovirus Virus-Like Particles Using <i>Pichia pastoris</i> . MSphere, 2020, 5, .	1.3	22
8	Assembly of infectious enteroviruses depends on multiple, conserved genomic RNA-coat protein contacts. PLoS Pathogens, 2020, 16, e1009146.	2.1	31
9	Rationally derived inhibitors of hepatitis C virus (HCV) p7 channel activity reveal prospect for bimodal antiviral therapy. ELife, 2020, 9, .	2.8	4
10	Structural characterization of genomic RNA-coat protein contacts in single-stranded RNA viruses by high-resolution cryo-EM. Access Microbiology, 2020, 2, .	0.2	0
11	Unexpected mode of engagement between enterovirus 71 and its receptor SCARB2. Nature Microbiology, 2019, 4, 414-419.	5.9	73
12	Involvement of a Nonstructural Protein in Poliovirus Capsid Assembly. Journal of Virology, 2019, 93, .	1.5	10
13	Career thoughts and recollections: 50 years of publishing in the Journal of General Virology. Journal of General Virology, 2019, 100, 1390-1392.	1.3	Ο
14	Recombinant Expression of Tandem-HBc Virus-Like Particles (VLPs). Methods in Molecular Biology, 2018, 1776, 97-123.	0.4	15
15	High-speed fixed-target serial virus crystallography. Nature Methods, 2017, 14, 805-810.	9.0	106
16	Increasing Type 1 Poliovirus Capsid Stability by Thermal Selection. Journal of Virology, 2017, 91, .	1.5	49
17	Plant-made polio type 3 stabilized VLPs—a candidate synthetic polio vaccine. Nature Communications, 2017, 8, 245	5.8	91
18	Genetic economy in picornaviruses: Foot-and-mouth disease virus replication exploits alternative precursor cleavage pathways. PLoS Pathogens, 2017, 13, e1006666.	2.1	30

DAVID J ROWLANDS

#	Article	IF	CITATIONS
19	Picornavirus RNA is protected from cleavage by ribonuclease during virion uncoating and transfer across cellular and model membranes. PLoS Pathogens, 2017, 13, e1006197.	2.1	25
20	Both <i>cis</i> and <i>trans</i> Activities of Foot-and-Mouth Disease Virus 3D Polymerase Are Essential for Viral RNA Replication. Journal of Virology, 2016, 90, 6864-6883.	1.5	17
21	Potent antiviral agents fail to elicit genetically-stable resistance mutations in either enterovirus 71 or Coxsackievirus A16. Antiviral Research, 2015, 124, 77-82.	1.9	22
22	Tandem Fusion of Hepatitis B Core Antigen Allows Assembly of Virus-Like Particles in Bacteria and Plants with Enhanced Capacity to Accommodate Foreign Proteins. PLoS ONE, 2015, 10, e0120751.	1.1	105
23	Revealing the density of encoded functions in a viral RNA. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2227-2232.	3.3	64
24	Assembly Pathway of Hepatitis B Core Virus-like Particles from Genetically Fused Dimers. Journal of Biological Chemistry, 2015, 290, 16238-16245.	1.6	24
25	Human hepatitis A virus is united with a host of relations. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15010-15011.	3.3	4
26	Hepatitis A virus and the origins of picornaviruses. Nature, 2015, 517, 85-88.	13.7	158
27	Employing transposon mutagenesis to investigate foot-and-mouth disease virus replication. Journal of General Virology, 2015, 96, 3507-3518.	1.3	21
28	Capsid Protein VP4 of Human Rhinovirus Induces Membrane Permeability by the Formation of a Size-Selective Multimeric Pore. PLoS Pathogens, 2014, 10, e1004294.	2.1	88
29	FMDV replicons encoding green fluorescent protein are replication competent. Journal of Virological Methods, 2014, 209, 35-40.	1.0	31
30	Inhibition of the foot-and-mouth disease virus subgenomic replicon by RNA aptamers. Journal of General Virology, 2014, 95, 2649-2657.	1.3	16
31	More-powerful virus inhibitors from structure-based analysis of HEV71 capsid-binding molecules. Nature Structural and Molecular Biology, 2014, 21, 282-288.	3.6	88
32	NS2 is dispensable for efficient assembly of hepatitis C virus-like particles in a bipartite trans-encapsidation system. Journal of General Virology, 2014, 95, 2427-2441.	1.3	1
33	A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71. Nature Structural and Molecular Biology, 2012, 19, 424-429.	3.6	347
34	Cell Entry of the Aphthovirus Equine Rhinitis A Virus Is Dependent on Endosome Acidification. Journal of Virology, 2010, 84, 6235-6240.	1.5	12
35	Crystal structure of equine rhinitis A virus in complex with its sialic acid receptor. Journal of General Virology, 2010, 91, 1971-1977.	1.3	13
36	Picornaviruses. Current Topics in Microbiology and Immunology, 2010, 343, 43-89.	0.7	172

DAVID J ROWLANDS

#	Article	IF	CITATIONS
37	Expression of hepatitis C virus (HCV) structural proteins in trans facilitates encapsidation and transmission of HCV subgenomic RNA. Journal of General Virology, 2009, 90, 833-842.	1.3	23
38	Equine Rhinitis A Virus and Its Low pH Empty Particle: Clues Towards an Aphthovirus Entry Mechanism?. PLoS Pathogens, 2009, 5, e1000620.	2.1	64
39	Foot-and-Mouth Disease Virus Assembly: Processing of Recombinant Capsid Precursor by Exogenous Protease Induces Self-Assembly of Pentamers In Vitro in a Myristoylation-Dependent Manner. Journal of Virology, 2009, 83, 11275-11282.	1.5	46
40	Recombinant VP4 of Human Rhinovirus Induces Permeability in Model Membranes. Journal of Virology, 2008, 82, 4169-4174.	1.5	43
41	Fred Brown. 31 January 1925 — 20 February 2004. Biographical Memoirs of Fellows of the Royal Society, 2007, 53, 93-108.	0.1	0
42	Characterization of Early Steps in the Poliovirus Infection Process: Receptor-Decorated Liposomes Induce Conversion of the Virus to Membrane-Anchored Entry-Intermediate Particles. Journal of Virology, 2006, 80, 172-180.	1.5	94
43	A link between translation of the hepatitis C virus polyprotein and polymerase function; possible consequences for hyperphosphorylation of NS5A. Journal of General Virology, 2006, 87, 93-102.	1.3	18
44	Tagging of NS5A expressed from a functional hepatitis C virus replicon. Journal of General Virology, 2006, 87, 635-640.	1.3	21
45	A conserved basic loop in hepatitis C virus p7 protein is required for amantadine-sensitive ion channel activity in mammalian cells but is dispensable for localization to mitochondria. Journal of General Virology, 2004, 85, 451-461.	1.3	149
46	Introduction of replication-competent hepatitis C virus transcripts using a tetracycline-regulable baculovirus delivery system. Journal of General Virology, 2004, 85, 429-439.	1.3	46
47	Substrate Complexes of Hepatitis C Virus RNA Polymerase (HC-J4): Structural Evidence for Nucleotide Import and De-novo Initiation. Journal of Molecular Biology, 2003, 326, 1025-1035.	2.0	142
48	The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug, Amantadine. FEBS Letters, 2003, 535, 34-38.	1.3	403
49	Mouse respiratory epithelial cells support efficient replication of human rhinovirus. Journal of General Virology, 2003, 84, 2829-2836.	1.3	56
50	Efficient delivery and regulable expression of hepatitis C virus full-length and minigenome constructs in hepatocyte-derived cell lines using baculovirus vectors. Journal of General Virology, 2002, 83, 383-394.	1.3	34
51	The internal ribosome entry site (IRES) of hepatitis C virus visualized by electron microscopy. Rna, 2001, 7, 661-670.	1.6	29
52	The inhibition of cAMP-dependent protein kinase by full-length hepatitis C virus NS3/4A complex is due to ATP hydrolysis. Journal of General Virology, 2001, 82, 1637-1646.	1.3	22
53	Structure of a major immunogenic site on foot-and-mouth disease virus. Nature, 1993, 362, 566-568.	13.7	360
54	The three-dimensional structure of foot-and-mouth disease virus at 2.9 Ã resolution. Nature, 1989, 337, 709-716.	13.7	887

DAVID J ROWLANDS

#	Article	IF	CITATIONS
55	Non-responsiveness to a foot-and-mouth disease virus peptide overcome by addition of foreign helper T-cell determinants. Nature, 1987, 330, 168-170.	13.7	221
56	The sequence of foot-and-mouth disease virus RNA to the 5′ side of the poly(C) tract. Gene, 1985, 40, 331-336.	1.0	42
57	Protection against foot-and-mouth disease by immunization with a chemically synthesized peptide predicted from the viral nucleotide sequence. Nature, 1982, 298, 30-33.	13.7	843
58	Antigenic Variation in Foot-and-Mouth Disease Virus. , 0, , 51-58.		1
59	Vaccine Strategies. , 0, , 429-447.		0