## Zaklina Kovacevic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4666014/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Thiosemicarbazones from the Old to New: Iron Chelators That Are More Than Just Ribonucleotide<br>Reductase Inhibitors. Journal of Medicinal Chemistry, 2009, 52, 5271-5294.                                                                              | 6.4  | 338       |
| 2  | The Iron Chelators Dp44mT and DFO Inhibit TGF-Î <sup>2</sup> -induced Epithelial-Mesenchymal Transition via<br>Up-Regulation of N-Myc Downstream-regulated Gene 1 (NDRG1). Journal of Biological Chemistry, 2012,<br>287, 17016-17028.                   | 3.4  | 213       |
| 3  | Tuning Cell Cycle Regulation with an Iron Key. Cell Cycle, 2007, 6, 1982-1994.                                                                                                                                                                           | 2.6  | 206       |
| 4  | The metastasis suppressor, Ndrg-1: a new ally in the fight against cancer. Carcinogenesis, 2006, 27, 2355-2366.                                                                                                                                          | 2.8  | 168       |
| 5  | Iron Chelators for the Treatment of Cancer. Current Medicinal Chemistry, 2012, 19, 2689-2702.                                                                                                                                                            | 2.4  | 158       |
| 6  | Novel Thiosemicarbazone Iron Chelators Induce Up-Regulation and Phosphorylation of the Metastasis<br>Suppressor N-myc Down-Stream Regulated Gene 1: A New Strategy for the Treatment of Pancreatic<br>Cancer. Molecular Pharmacology, 2011, 80, 598-609. | 2.3  | 154       |
| 7  | The Iron-Regulated Metastasis Suppressor NDRG1 Targets NEDD4L, PTEN, and SMAD4 and Inhibits the PI3K and Ras Signaling Pathways. Antioxidants and Redox Signaling, 2013, 18, 874-887.                                                                    | 5.4  | 151       |
| 8  | Roads to melanoma: Key pathways and emerging players in melanoma progression and oncogenic<br>signaling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 770-784.                                                                   | 4.1  | 148       |
| 9  | Targeting cancer by binding iron: Dissecting cellular signaling pathways. Oncotarget, 2015, 6, 18748-18779.                                                                                                                                              | 1.8  | 137       |
| 10 | The renaissance of polypharmacology in the development of anti-cancer therapeutics: Inhibition of the<br>"Triad of Death―in cancer by Di-2-pyridylketone thiosemicarbazones. Pharmacological Research, 2015,<br>100, 255-260.                            | 7.1  | 127       |
| 11 | Metastasis suppressor, NDRG1, mediates its activity through signaling pathways and molecular motors. Carcinogenesis, 2013, 34, 1943-1954.                                                                                                                | 2.8  | 117       |
| 12 | Redox cycling metals: Pedaling their roles in metabolism and their use in the development of novel therapeutics. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 727-748.                                                           | 4.1  | 111       |
| 13 | The Iron Chelator, Deferasirox, as a Novel Strategy for Cancer Treatment: Oral Activity Against Human<br>Lung Tumor Xenografts and Molecular Mechanism of Action. Molecular Pharmacology, 2013, 83,<br>179-190.                                          | 2.3  | 106       |
| 14 | Copper and conquer: copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics. Metallomics, 2016, 8, 874-886.                                                                                                          | 2.4  | 105       |
| 15 | Dp44mT targets the AKT, TGF-Î <sup>2</sup> and ERK pathways via the metastasis suppressor NDRG1 in normal prostate epithelial cells and prostate cancer cells. British Journal of Cancer, 2013, 108, 409-419.                                            | 6.4  | 100       |
| 16 | The novel thiosemicarbazone, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC),<br>inhibits neuroblastoma growth in vitro and in vivo via multiple mechanisms. Journal of Hematology<br>and Oncology, 2016, 9, 98.                      | 17.0 | 94        |
| 17 | The metastasis suppressor, NDRG1, modulates β-Catenin phosphorylation and nuclear translocation by mechanisms involving FRAT1 and PAK4. Journal of Cell Science, 2014, 127, 3116-30.                                                                     | 2.0  | 93        |
| 18 | Targeting the Metastasis Suppressor, NDRG1, Using Novel Iron Chelators: Regulation of Stress<br>Fiber-Mediated Tumor Cell Migration via Modulation of the ROCK1/pMLC2 Signaling Pathway.<br>Molecular Pharmacology, 2013, 83, 454-469.                   | 2.3  | 90        |

ZAKLINA KOVACEVIC

| #  | Article                                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Molecular functions of the iron-regulated metastasis suppressor, NDRG1, and its potential as a<br>molecular target for cancer therapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1845, 1-19.                                                                                           | 7.4 | 88        |
| 20 | The TGF-β, PI3K/Akt and PTEN pathways: established and proposed biochemical integration in prostate cancer. Biochemical Journal, 2009, 417, 411-421.                                                                                                                                                 | 3.7 | 86        |
| 21 | The Metastasis Suppressor, N-myc Downstream-regulated Gene 1 (NDRG1), Inhibits Stress-induced Autophagy in Cancer Cells. Journal of Biological Chemistry, 2014, 289, 9692-9709.                                                                                                                      | 3.4 | 83        |
| 22 | Synthesis, Characterization, and in Vitro Anticancer Activity of Copper and Zinc<br>Bis(Thiosemicarbazone) Complexes. Inorganic Chemistry, 2019, 58, 13709-13723.                                                                                                                                    | 4.0 | 78        |
| 23 | The metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1), upregulates p21 via p53-independent mechanisms. Carcinogenesis, 2011, 32, 732-740.                                                                                                                                             | 2.8 | 76        |
| 24 | The role of NDRG1 in the pathology and potential treatment of human cancers. Journal of Clinical Pathology, 2013, 66, 911-917.                                                                                                                                                                       | 2.0 | 72        |
| 25 | The iron-regulated metastasis suppressor, Ndrg-1: Identification of novel molecular targets.<br>Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 1981-1992.                                                                                                                      | 4.1 | 70        |
| 26 | The Medicinal Chemistry of Novel Iron Chelators for the Treatment of Cancer. Current Topics in Medicinal Chemistry, 2011, 11, 483-499.                                                                                                                                                               | 2.1 | 69        |
| 27 | The Metastasis Suppressor, N-MYC Downstream-regulated Gene-1 (NDRG1), Down-regulates the ErbB<br>Family of Receptors to Inhibit Downstream Oncogenic Signaling Pathways. Journal of Biological<br>Chemistry, 2016, 291, 1029-1052.                                                                   | 3.4 | 65        |
| 28 | The proto-oncogene c-Src and its downstream signaling pathways are inhibited by the metastasis suppressor, NDRG1. Oncotarget, 2015, 6, 8851-8874.                                                                                                                                                    | 1.8 | 64        |
| 29 | The emerging role of progesterone receptor membrane component 1 (PGRMC1) in cancer biology.<br>Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1866, 339-349.                                                                                                                                | 7.4 | 63        |
| 30 | Synthesis and characterization of quinoline-based thiosemicarbazones and correlation of cellular<br>iron-binding efficacy to anti-tumor efficacy. Bioorganic and Medicinal Chemistry Letters, 2012, 22,<br>5527-5531.                                                                                | 2.2 | 61        |
| 31 | N-myc Downstream Regulated 1 (NDRG1) Is Regulated by Eukaryotic Initiation Factor 3a (eIF3a) during<br>Cellular Stress Caused by Iron Depletion. PLoS ONE, 2013, 8, e57273.                                                                                                                          | 2.5 | 59        |
| 32 | Metals and metastasis: Exploiting the role of metals in cancer metastasis to develop novel anti-metastatic agents. Pharmacological Research, 2017, 115, 275-287.                                                                                                                                     | 7.1 | 56        |
| 33 | Expanding horizons in iron chelation and the treatment of cancer: Role of iron in the regulation of<br>ER stress and the epithelial–mesenchymal transition. Biochimica Et Biophysica Acta: Reviews on<br>Cancer, 2014, 1845, 166-181.                                                                | 7.4 | 50        |
| 34 | Interplay of the iron-regulated metastasis suppressor NDRG1 with epidermal growth factor receptor (EGFR) and oncogenic signaling. Journal of Biological Chemistry, 2017, 292, 12772-12782.                                                                                                           | 3.4 | 48        |
| 35 | Pharmacological targeting and the diverse functions of the metastasis suppressor, NDRG1, in cancer.<br>Free Radical Biology and Medicine, 2020, 157, 154-175.                                                                                                                                        | 2.9 | 47        |
| 36 | Targeting the Metastasis Suppressor, N-Myc Downstream Regulated Gene-1, with Novel<br>Di-2-Pyridylketone Thiosemicarbazones: Suppression of Tumor Cell Migration and Cell-Collagen<br>Adhesion by Inhibiting Focal Adhesion Kinase/Paxillin Signaling. Molecular Pharmacology, 2016, 89,<br>521-540. | 2.3 | 45        |

| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Frataxin and the molecular mechanism of mitochondrial iron-loading in Friedreich's ataxia. Clinical<br>Science, 2016, 130, 853-870.                                                                                                                               | 4.3 | 45        |
| 38 | The metastasis suppressor, NDRG1, attenuates oncogenic TGF-β and NF-κB signaling to enhance membrane<br>E-cadherin expression in pancreatic cancer cells. Carcinogenesis, 2019, 40, 805-818.                                                                      | 2.8 | 45        |
| 39 | Siderocalin/Lcn2/NGAL/24p3 Does Not Drive Apoptosis Through Gentisic Acid Mediated Iron<br>Withdrawal in Hematopoietic Cell Lines. PLoS ONE, 2012, 7, e43696.                                                                                                     | 2.5 | 45        |
| 40 | Investigating the anti-proliferative activity of styrylazanaphthalenes and azanaphthalenediones.<br>Bioorganic and Medicinal Chemistry, 2010, 18, 2664-2671.                                                                                                      | 3.0 | 44        |
| 41 | The molecular effect of metastasis suppressors on Src signaling and tumorigenesis: new therapeutic targets. Oncotarget, 2015, 6, 35522-35541.                                                                                                                     | 1.8 | 43        |
| 42 | Investigating the Spectrum of Biological Activity of Ring-Substituted Salicylanilides and Carbamoylphenylcarbamates. Molecules, 2010, 15, 8122-8142.                                                                                                              | 3.8 | 40        |
| 43 | The metastasis suppressor, NDRG1, inhibits "stemness―of colorectal cancer <i>via</i> down-regulation of nuclear β-catenin and CD44. Oncotarget, 2015, 6, 33893-33911.                                                                                             | 1.8 | 40        |
| 44 | Novel Mechanism of Cytotoxicity for the Selective Selenosemicarbazone, 2-Acetylpyridine<br>4,4-Dimethyl-3-selenosemicarbazone (Ap44mSe): Lysosomal Membrane Permeabilization. Journal of<br>Medicinal Chemistry, 2016, 59, 294-312.                               | 6.4 | 39        |
| 45 | Novel Thiosemicarbazones Regulate the Signal Transducer and Activator of Transcription 3 (STAT3)<br>Pathway: Inhibition of Constitutive and Interleukin 6–Induced Activation by Iron Depletion. Molecular<br>Pharmacology, 2015, 87, 543-560.                     | 2.3 | 37        |
| 46 | Mechanism of the induction of endoplasmic reticulum stress by the anti-cancer agent,<br>di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT): Activation of PERK/eIF2α, IRE1α, ATF6 and<br>calmodulin kinase. Biochemical Pharmacology, 2016, 109, 27-47. | 4.4 | 36        |
| 47 | Identification of differential phosphorylation and sub-cellular localization of the metastasis<br>suppressor, NDRG1. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2644-2663.                                                           | 3.8 | 36        |
| 48 | PGRMC1 regulation by phosphorylation: potential new insights in controlling biological activity.<br>Oncotarget, 2016, 7, 50822-50827.                                                                                                                             | 1.8 | 35        |
| 49 | Lysosomal membrane stability plays a major role in the cytotoxic activity of the anti-proliferative<br>agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT). Biochimica Et Biophysica Acta -<br>Molecular Cell Research, 2016, 1863, 1665-1681.    | 4.1 | 34        |
| 50 | The metastasis suppressor NDRG1 down-regulates the epidermal growth factor receptor via a<br>lysosomal mechanism by up-regulating mitogen-inducible gene 6. Journal of Biological Chemistry, 2019,<br>294, 4045-4064.                                             | 3.4 | 33        |
| 51 | A Nitric Oxide Storage and Transport System That Protects Activated Macrophages from Endogenous<br>Nitric Oxide Cytotoxicity. Journal of Biological Chemistry, 2016, 291, 27042-27061.                                                                            | 3.4 | 32        |
| 52 | Regulation and control of nitric oxide (NO) in macrophages: Protecting the "professional killer cell―<br>from its own cytotoxic arsenal via MRP1 and GSTP1. Biochimica Et Biophysica Acta - General Subjects,<br>2017, 1861, 995-999.                             | 2.4 | 32        |
| 53 | Glutathione S-transferase and MRP1 form an integrated system involved in the storage and transport of dinitrosyl–dithiolato iron complexes in cells. Free Radical Biology and Medicine, 2014, 75, 14-29.                                                          | 2.9 | 29        |
| 54 | Ironing out the role of the cyclin-dependent kinase inhibitor, p21 in cancer: Novel iron chelating agents to target p21 expression and activity. Free Radical Biology and Medicine, 2019, 133, 276-294.                                                           | 2.9 | 27        |

ZAKLINA KOVACEVIC

| #  | Article                                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Unique targeting of androgenâ€dependent and â€independent AR signaling in prostate cancer to overcome<br>androgen resistance. FASEB Journal, 2020, 34, 11511-11528.                                                                                                                                            | O.5 | 25        |
| 56 | Breaking the cycle: Targeting of NDRG1 to inhibit biâ€directional oncogenic crossâ€ŧalk between pancreatic cancer and stroma. FASEB Journal, 2021, 35, e21347.                                                                                                                                                 | 0.5 | 23        |
| 57 | Novel Thiosemicarbazones Inhibit Lysine-Rich Carcinoembryonic Antigen–Related Cell Adhesion<br>Molecule 1 (CEACAM1) Coisolated (LYRIC) and the LYRIC-Induced Epithelial-Mesenchymal Transition via<br>Upregulation of N-Myc Downstream-Regulated Gene 1 (NDRG1). Molecular Pharmacology, 2017, 91,<br>499-517. | 2.3 | 22        |
| 58 | Targeting Oncogenic Nuclear Factor Kappa B Signaling with Redox-Active Agents for Cancer<br>Treatment. Antioxidants and Redox Signaling, 2019, 30, 1096-1123.                                                                                                                                                  | 5.4 | 21        |
| 59 | Overcoming tamoxifen resistance in oestrogen receptorâ€positive breast cancer using the novel<br>thiosemicarbazone antiâ€cancer agent, <scp>DpC</scp> . British Journal of Pharmacology, 2020, 177,<br>2365-2380.                                                                                              | 5.4 | 21        |
| 60 | Targeting Wnt/tenascin C-mediated cross talk between pancreatic cancer cells and stellate cells via<br>activation ofÂtheÂmetastasis suppressor NDRG1. Journal of Biological Chemistry, 2022, 298, 101608.                                                                                                      | 3.4 | 20        |
| 61 | Exploiting Cancer Metal Metabolism using Anti-Cancer Metal- Binding Agents. Current Medicinal Chemistry, 2019, 26, 302-322.                                                                                                                                                                                    | 2.4 | 19        |
| 62 | Thiosemicarbazones suppress expression of the c-Met oncogene by mechanisms involving lysosomal degradation and intracellular shedding. Journal of Biological Chemistry, 2020, 295, 481-503.                                                                                                                    | 3.4 | 18        |
| 63 | The metastasis suppressor NDRG1 directly regulates androgen receptor signaling in prostate cancer.<br>Journal of Biological Chemistry, 2021, 297, 101414.                                                                                                                                                      | 3.4 | 18        |
| 64 | Making a case for albumin – a highly promising drug-delivery system. Future Medicinal Chemistry, 2015,<br>7, 553-556.                                                                                                                                                                                          | 2.3 | 17        |
| 65 | Iron Chelation: Inhibition of Key Signaling Pathways in the Induction of the Epithelial Mesenchymal<br>Transition in Pancreatic Cancer and Other Tumors. Critical Reviews in Oncogenesis, 2013, 18, 409-434.                                                                                                   | 0.4 | 15        |
| 66 | Differential targeting of the cyclin-dependent kinase inhibitor, p21CIP1/WAF1, by chelators with anti-proliferative activity in a range of tumor cell-types. Oncotarget, 2015, 6, 29694-29711.                                                                                                                 | 1.8 | 15        |
| 67 | Iron Chelators: Development of Novel Compounds with High and Selective Anti-Tumour Activity.<br>Current Drug Delivery, 2010, 7, 194-207.                                                                                                                                                                       | 1.6 | 14        |
| 68 | Two mechanisms involving the autophagic and proteasomal pathways process the metastasis<br>suppressor protein, N-myc downstream regulated gene 1. Biochimica Et Biophysica Acta - Molecular<br>Basis of Disease, 2019, 1865, 1361-1378.                                                                        | 3.8 | 12        |
| 69 | E6AP Promotes a Metastatic Phenotype in Prostate Cancer. IScience, 2019, 22, 1-15.                                                                                                                                                                                                                             | 4.1 | 11        |
| 70 | Transcriptional regulation of the cyclin-dependent kinase inhibitor, p21 CIP1/WAF1 , by the chelator, Dp44mT. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 761-774.                                                                                                                           | 2.4 | 10        |
| 71 | Copper that cancer with lysosomal love!. Aging, 2016, 8, 210-211.                                                                                                                                                                                                                                              | 3.1 | 10        |
| 72 | Tumor-induced neoangiogenesis and receptor tyrosine kinases – Mechanisms and strategies for<br>acquired resistance. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1217-1225.                                                                                                                   | 2.4 | 9         |

ZAKLINA KOVACEVIC

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Chelators to the Rescue: Different Horses for Different Courses!. Chemical Research in Toxicology, 2011, 24, 279-282.                                                                                    | 3.3 | 8         |
| 74 | Research Spotlight: Iron chelation: deciphering novel molecular targets for cancer therapy. The tip of the iceberg of a web of iron-regulated molecules. Future Medicinal Chemistry, 2011, 3, 1983-1986. | 2.3 | 5         |
| 75 | The redox-active, anti-cancer drug Dp44mT inhibits T-cell activation and CD25 through a copper-dependent mechanism. Redox Report, 2013, 18, 48-50.                                                       | 4.5 | 3         |
| 76 | Targeting Iron in Cancer Cells: A New Strategy to Inhibit Metastatic Progression. , 2012, 01, .                                                                                                          |     | 2         |
| 77 | Abstract A67: Mechanisms involved in regulating the expression of the cyclin-dependent kinase (cdk) inhibitor, p21, by intracellular iron levels , 2011, , .                                             |     | 1         |
| 78 | Targeting autophagy in antitumor agent design: furthering the †lysosomal love' strategy. Future<br>Medicinal Chemistry, 2016, 8, 727-729.                                                                | 2.3 | 0         |
| 79 | Abstract B172: The metastasis suppressor NDRG1 upâ€regulates p21 in a p53â€independent manner in cancer cells: A novel insight into its antitumor function. , 2009, , .                                  |     | 0         |
| 80 | Targeting the Metastasis Suppressor NDRG1: A New Strategy for the Treatment of Pancreatic Cancer.<br>FASEB Journal, 2012, 26, 761.28.                                                                    | 0.5 | 0         |
| 81 | Abstract A232: Novel thiosemicarbazones with potent antitumor and antimetastatic activity inhibit the signal transducer and activator of transcription (STAT) pathway , 2013, , .                        |     | 0         |
| 82 | Abstract A63: Role of the metastasis suppressor, NDRG1, in regulating the EGFR and ErbB family of receptors and its effects on key oncogenic signaling pathways in pancreatic cancer. , 2015, , .        |     | 0         |
| 83 | Abstract A165: Novel thiosemicarbazone, Dp44mT, promotes NDRG1 to downregulate oncogenic signaling pathways in cancer. , 2018, , .                                                                       |     | 0         |
| 84 | Abstract B212: N-myc downstream regulated 1 (NDRG1) is regulated by eukaryotic initiation factor 3a (eIF3a) during cellular stress caused by iron depletion. , 2018, , .                                 |     | 0         |
| 85 | Abstract A16: A novel therapeutic approach to inhibit the bidirectional oncogenic crosstalk between pancreatic cancer cells and the surrounding stroma. , 2019, , .                                      |     | 0         |
| 86 | Abstract P2-04-02: Progesterone receptor membrane component 1 - A novel key regulator in lipid homeostasis drives oncogenic signaling resulting in breast cancer progression. , 2020, , .                |     | 0         |