Jinlai Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4665757/publications.pdf

Version: 2024-02-01

		1464605	1905433	
7	387	7	7	
papers	citations	h-index	g-index	
7	7	7	471	
/	/	/	471	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Iron-Facilitated Organic Radical Formation from Secondary Organic Aerosols in Surrogate Lung Fluid. Environmental Science & Eamp; Technology, 2022, 56, 7234-7243.	4.6	20
2	Effects of Acidity on Reactive Oxygen Species Formation from Secondary Organic Aerosols. ACS Environmental Au, 2022, 2, 336-345.	3.3	12
3	Environmentally Persistent Free Radicals, Reactive Oxygen Species Generation, and Oxidative Potential of Highway PM _{2.5} . ACS Earth and Space Chemistry, 2021, 5, 1865-1875.	1.2	28
4	Superoxide Formation from Aqueous Reactions of Biogenic Secondary Organic Aerosols. Environmental Science & Environmental Scie	4.6	35
5	Complexation of Iron and Copper in Ambient Particulate Matter and Its Effect on the Oxidative Potential Measured in a Surrogate Lung Fluid. Environmental Science & Echnology, 2019, 53, 1661-1671.	4.6	64
6	Synergistic and Antagonistic Interactions among the Particulate Matter Components in Generating Reactive Oxygen Species Based on the Dithiothreitol Assay. Environmental Science & Environmental Scien	4.6	117
7	Rethinking Dithiothreitol-Based Particulate Matter Oxidative Potential: Measuring Dithiothreitol Consumption versus Reactive Oxygen Species Generation. Environmental Science & Eamp; Technology, 2017, 51, 6507-6514.	4.6	111