José Manuel Amarilla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/466447/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tailored 3D Foams Decorated with Nanostructured Manganese Oxide for Asymmetric Electrochemical Capacitors. Journal of the Electrochemical Society, 2022, 169, 020511.	2.9	2
2	TiO ₂ Nanostructures as Anode Materials for Li/Naâ€lon Batteries. Chemical Record, 2018, 18, 1178-1191.	5.8	47
3	Additive-free Li ₄ Ti ₅ O ₁₂ thick electrodes for Li-ion batteries with high electrochemical performance. Journal of Materials Chemistry A, 2018, 6, 5952-5961.	10.3	33
4	A Procedure for Evaluating the Capacity Associated with Battery-Type Electrode and Supercapacitor-Type One in Composite Electrodes. Journal of the Electrochemical Society, 2018, 165, A4034-A4040.	2.9	34
5	Asymmetrical imidazolium-trialkylammonium room temperature dicationic ionic liquid electrolytes for Li-ion batteries. Electrochimica Acta, 2018, 280, 171-180.	5.2	26
6	Operando monitoring the nanometric morphological evolution of TiO2 nanoparticles in a Na-ion battery. Materials Today Energy, 2018, 10, 23-27.	4.7	9
7	The design and study of new Li-ion full cells of LiCo2/3Ni1/6Mn1/6O2 positive electrode paired with MnSn2 and Li4Ti5O12 negative electrodes. Solid State Ionics, 2017, 300, 175-181.	2.7	13
8	Toward a Better Understanding and Optimization of the Electrochemical Activity of Na-Ion TiO ₂ Anatase Anodes Using Uniform Nanostructures and Ionic Liquid Electrolytes. ACS Omega, 2017, 2, 3647-3657.	3.5	11
9	Highâ€performance Liâ€ion Battery based on Crâ€Substituted Lithium Manganite and Lithium Titanate Spinels: Influence of Mass Balance on its Electrochemistry. Energy Technology, 2017, 5, 725-731.	3.8	6
10	Computational Investigation of Li Insertion in Li ₃ VO ₄ . Chemistry of Materials, 2016, 28, 5643-5651.	6.7	50
11	Aerosol-Assisted Synthesis of Colloidal Aggregates with Different Morphology: Toward the Electrochemical Optimization of Li ₃ VO ₄ Battery Anodes Using Scalable Routes. Chemistry of Materials, 2016, 28, 986-993.	6.7	41
12	Dissimilar Crystal Dependence of Vanadium Oxide Cathodes in Organic Carbonate and Safe Ionic Liquid Electrolytes. ACS Applied Materials & Interfaces, 2016, 8, 2132-2141.	8.0	5
13	Surfactant-Free Vanadium Oxides from Reverse Micelles and Organic Oxidants: Solution Processable Nanoribbons with Potential Applicability as Battery Insertion Electrodes Assembled in Different Configurations. Langmuir, 2015, 31, 12489-12496.	3.5	6
14	Effect of thermal treatment used in the sol–gel synthesis of Li 4 Ti 5 O 12 spinel on its electrochemical properties as anode for lithium ion batteries. Electrochimica Acta, 2015, 163, 213-222.	5.2	32
15	Electrochemical response in aprotic ionic liquid electrolytes of TiO2 anatase anodes based on mesoporous mesocrystals with uniform colloidal size. Journal of Power Sources, 2015, 273, 368-374.	7.8	22
16	Chemical vs. electrochemical extraction of lithium from the Li-excess Li1.10Mn1.90O4 spinel followed by NMR and DRX techniques. Physical Chemistry Chemical Physics, 2014, 16, 3282.	2.8	20
17	Porous inorganic nanostructures with colloidal dimensions: synthesis and applications in electrochemical energy devices. Chemical Communications, 2014, 50, 2077-2088.	4.1	24
18	Study of the structural and thermal stability of Li0.3Co2/3Ni1/6Mn1/6O2. Electrochimica Acta, 2014, 135, 536-542.	5.2	7

#	Article	IF	CITATIONS
19	Effects of architecture on the electrochemistry of binder-free inverse opal carbons as Li–air cathodes in an ionic liquid-based electrolyte. Journal of Materials Chemistry A, 2013, 1, 14270.	10.3	23
20	Effect of composition, sonication and pressure on the rate capability of 5V-LiNi0.5Mn1.5O4 composite cathodes. Electrochimica Acta, 2013, 108, 175-181.	5.2	16
21	Influence of the synthesis method on the electrochemical properties of the Li4Ti5O12 spinel in Li-half and Li-ion full-cells. A systematic comparison. Electrochimica Acta, 2013, 93, 163-172.	5.2	61
22	LiCr0.2Ni0.4Mn1.4O4 spinels exhibiting huge rate capability at 25 and 55°C: Analysis of the effect of the particle size. Journal of Power Sources, 2011, 196, 10222-10227.	7.8	40
23	Iron oxide porous nanorods with different textural properties and surface composition: Preparation, characterization and electrochemical lithium storage capabilities. Journal of Power Sources, 2011, 196, 2164-2170.	7.8	41
24	Multifunctional Response of Anatase Nanostructures Based on 25 nm Mesocrystal‣ike Porous Assemblies. Advanced Materials, 2011, 23, 4904-4907.	21.0	59
25	On the LiCo2/3Ni1/6Mn1/6O2 positive electrode material. Electrochimica Acta, 2011, 56, 4081-4086.	5.2	29
26	Understanding the sucrose-assisted combustion method: Effects of the atmosphere and fuel amount on the synthesis and electrochemical performances of LiNi0.5Mn1.5O4 spinel. Journal of Power Sources, 2011, 196, 5951-5959.	7.8	45
27	Sub-micrometric LiCr0.2Ni0.4Mn1.4O4 spinel as 5V-cathode material exhibiting huge rate capability at 25 and 55°C. Electrochemistry Communications, 2010, 12, 548-552.	4.7	54
28	Amorphous Carbon Nanofibers and Their Activated Carbon Nanofibers as Supercapacitor Electrodes. Journal of Physical Chemistry C, 2010, 114, 10302-10307.	3.1	240
29	Sucrose-aided combustion synthesis of nanosized LiMn1.99â^'yLiyM0.01O4 (M=Al3+, Ni2+, Cr3+, Co3+,) Tj ETQ	q1 <u>1</u> 0.784 7.8	+314 rgBT /○
30	Ruthenium oxide/carbon composites with microporous or mesoporous carbon as support and prepared by two procedures. A comparative study as supercapacitor electrodes. Electrochimica Acta, 2009, 54, 2239-2245.	5.2	72
31	Amorphous carbon nanofibres inducing high specific capacitance of deposited hydrous ruthenium oxide. Electrochimica Acta, 2009, 54, 7452-7457.	5.2	29
32	Composition and structure of acid leached LiMn2â~'yTiyO4 (0.2â‰ӯâ‰≇.5) spinels. Journal of Solid State Chemistry, 2009, 182, 3226-3231.	2.9	11
33	The role of particle size on the electrochemical properties at 25 and at 55°C of the LiCr0.2Ni0.4Mn1.4O4 spinel as 5V-cathode materials for lithium-ion batteries. Electrochimica Acta, 2009, 54, 7542-7550.	5.2	63
34	PPO15-PEO22-PPO15 block copolymer assisted synthesis of monolithic macro- and microporous carbon aerogels exhibiting high conductivity and remarkable capacitance. Journal of Materials Chemistry, 2009, 19, 1236.	6.7	82
35	Understanding RuO2·xH2O/carbon nanofibre composites as supercapacitor electrodes. Journal of Power Sources, 2008, 176, 417-425.	7.8	82
36	Chromium doping as a new approach to improve the cycling performance at high temperature of 5V LiNiQ 5Mn1 5Q4-based positive electrode, Journal of Power Sources, 2008, 185, 501-511	7.8	111

José Manuel Amarilla

#	Article	IF	CITATIONS
37	LixNi0.7Co0.3O2 electrode material: Structural, physical and electrochemical investigations. Electrochimica Acta, 2008, 53, 5266-5271.	5.2	21
38	Macroporous 3D Architectures of Self-Assembled MWCNT Surface Decorated with Pt Nanoparticles as Anodes for a Direct Methanol Fuel Cell. Journal of Physical Chemistry C, 2007, 111, 5557-5560.	3.1	132
39	Nanosized LiMYMn2â^YO4 (M=Cr, Co and Ni) spinels synthesized by a sucrose-aided combustion method. Journal of Power Sources, 2007, 174, 1212-1217.	7.8	50
40	High-temperature thermal behaviour of Cr-Doped LiMn2O4 spinels synthesized by the sucrose-aided combustion method. Journal of Thermal Analysis and Calorimetry, 2007, 90, 67-72.	3.6	10
41	Lithium-deficient LiYMn2O4 spinels (0.9≤<1): Lithium content, synthesis temperature, thermal behaviour and electrochemical properties. Electrochimica Acta, 2006, 51, 3193-3201.	5.2	13
42	Combustion synthesis of nanocrystalline LiNiYCo1â^'2YMn1+YO4 spinels for 5V cathode materials. Journal of Power Sources, 2006, 160, 529-535.	7.8	35
43	RuO2·xH2O/NiO composites as electrodes for electrochemical capacitors. Electrochimica Acta, 2006, 51, 4693-4700.	5.2	35
44	Cation distribution and phase transformations in LiMn2â^'yTiyO4 solid solutions. Solid State Sciences, 2005, 7, 277-286.	3.2	21
45	The cubic BiULaO mixed oxide: Synthesis, structural characterization, thermal stability and electrical properties. Solid State Ionics, 2005, 176, 2313-2318.	2.7	6
46	Effect of the Thermal Treatment on the Particle Size and Electrochemical Response of LiCr[sub 0.2]Mn[sub 1.8]O[sub 4] Spinel. Journal of the Electrochemical Society, 2005, 152, A301.	2.9	28
47	Nanosize LiNiyMn2 ? yO4 (0 < y ? 0.5) spinels synthesized by a sucrose-aided combustion method. Characterization and electrochemical performance. Journal of Materials Chemistry, 2004, 14, 1640.	6.7	93
48	OptimizaciÃ ³ n de espinelas LiCo _y Mn _{2-y} O ₄ para electrodos positivos de baterÃas recargables de ion-litio mediante ajuste del dopado y de la temperatura de sÃntesis. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2004, 43, 127-131.	1.9	1
49	Differential scanning calorimetry an essential tool to characterize LiMn2O4 spinel. Journal of Thermal Analysis and Calorimetry, 2003, 73, 191-200.	3.6	6
50	TayNb1â^'yVO5 (0 <y<1) by="" electrochemical="" li+-insertion.<br="" method:="" mixed="" oxides="" sol–gel="" synthesized="">Catalysis Today, 2003, 78, 571-579.</y<1)>	4.4	11
51	LiMn2O4-based composites processed by a chemical-route Microstructural, electrical, electrical, electrochemical, and mechanical characterization. Journal of Power Sources, 2003, 115, 315-322.	7.8	52
52	Synthesizing nanocrystalline LiMn2O4 by a combustion route. Journal of Materials Chemistry, 2002, 12, 1184-1188.	6.7	109
53	High Temperature Co-doped LiMn2O4-Based Spinels. Structural, Electrical, and Electrochemical Characterization. Chemistry of Materials, 2002, 14, 1598-1605.	6.7	112
54	Atomic Level Study of LiMn2O4 as Electrode in Lithium Batteries. ChemPhysChem, 2002, 3, 367-370.	2.1	19

#	Article	IF	CITATIONS
55	Electrochemical characteristics of cobalt-doped LiCoyMn2â^'yO4 (0â‰ ÿ â‰ 0 .66) spinels synthesized at low temperature from CoxMn3â^'xO4 precursors. Solid State Ionics, 2000, 127, 73-81.	2.7	45
56	Antimonic acid and sulfonated polystyrene proton-conducting polymeric composites. Solid State lonics, 2000, 127, 133-139.	2.7	48
57	Thermal evolution of infrared vibrational properties ofLi4/3Ti5/3O4measured by specular reflectance. Physical Review B, 2000, 62, 12062-12068.	3.2	21
58	Structural study of the trigonal Bi2.34U0.33La0.33O5 oxide ion conductor: Rietveld refinement of X-ray and neutron powder diffraction data. Journal of the Chemical Society Dalton Transactions, 1999, , 1137-1142.	1.1	3
59	Polymorphism, Phase Transformations, and Oxide Ion Conductivity in Bi1.56U0.22La0.22O3.33. Chemistry of Materials, 1998, 10, 574-580.	6.7	5
60	lonic Conductivity and Structural Phase Transformations for Hexagonal and Cubic Bi1.33U0.33La0.33O3.5Polymorphs. Chemistry of Materials, 1997, 9, 1262-1267.	6.7	4
61	A New Family of Bismuth-Based Oxide Materials: Bi2-2xUxLaxO(3+3x/2)(0.333 ≥x≥ 0.038): Synthesis, Characterization, and Phase Transformations on Aging. Chemistry of Materials, 1996, 8, 401-407.	6.7	9
62	Preparation, Characterization, and Thermal Behavior of a New High Oxide Ion Conductor: Bismuth Uranium Lanthanum Oxide. Chemistry of Materials, 1995, 7, 341-347.	6.7	7
63	Influence of KOH concentration on the γ-MnO2 redox mechanism. Electrochimica Acta, 1994, 39, 2321-2331.	5.2	38
64	Electrochemical reduction of βî—,MnO2, ramsdellite, γ- and εî—,MnO2. Solid State Ionics, 1994, 70-71, 649-653.	2.7	12
65	Electrochemical Activity of Natural and Synthetic Manganese Dioxides. Materials Research Society Symposia Proceedings, 1994, 369, 87.	0.1	5
66	Organosilicic membranes doped with crown-ethers. Journal of Materials Chemistry, 1993, 3, 687-688.	6.7	15
67	Lithium-niobium vanadium oxide and lithium-tantalum vanadium oxide, MVO5, bronzes. Chemistry of Materials, 1992, 4, 62-67.	6.7	30
68	TaxNb1â^'xVO5 (0 < x < 1) ternary oxides: Synthesis by sol-gel and structural characterization. Journal of Solid State Chemistry, 1992, 99, 258-266.	2.9	8
69	51V and 93Nb high resolution NMR study of NbVO5. Journal of Materials Research, 1991, 6, 393-400.	2.6	18
70	Synthesis and characterization of the new mixed oxide NbVO5. Materials Letters, 1989, 8, 132-136.	2.6	24