
## Francisco Rodriguez-Gomez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4664119/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Yeasts in table olive processing: Desirable or spoilage microorganisms?. International Journal of Food<br>Microbiology, 2012, 160, 42-49.                                                               | 4.7 | 129       |
| 2  | Classification of pmoA amplicon pyrosequences using BLAST and the lowest common ancestor method in MEGAN. Frontiers in Microbiology, 2012, 5, 34.                                                       | 3.5 | 121       |
| 3  | Exploring the yeast biodiversity of green table olive industrial fermentations for technological applications. International Journal of Food Microbiology, 2011, 147, 89-96.                            | 4.7 | 87        |
| 4  | Formation of lactic acid bacteria–yeasts communities on the olive surface during Spanish-style<br>Manzanilla fermentations. Food Microbiology, 2012, 32, 295-301.                                       | 4.2 | 80        |
| 5  | Lipolytic activity of the yeast species associated with the fermentation/storage phase of ripe olive processing. Food Microbiology, 2010, 27, 604-612.                                                  | 4.2 | 64        |
| 6  | Multivariate analysis to discriminate yeast strains with technological applications in table olive processing. World Journal of Microbiology and Biotechnology, 2012, 28, 1761-1770.                    | 3.6 | 61        |
| 7  | Potential benefits of the application of yeast starters in table olive processing. Frontiers in Microbiology, 2012, 3, .                                                                                | 3.5 | 51        |
| 8  | Genotyping, identification and multifunctional features of yeasts associated to Bosana naturally black table olive fermentations. Food Microbiology, 2018, 69, 33-42.                                   | 4.2 | 48        |
| 9  | Evaluating the individual effects of temperature and salt on table olive related microorganisms. Food<br>Microbiology, 2013, 33, 178-184.                                                               | 4.2 | 39        |
| 10 | Production of potential probiotic Spanish-style green table olives at pilot plant scale using multifunctional starters. Food Microbiology, 2014, 44, 278-287.                                           | 4.2 | 38        |
| 11 | TableÂolive fermentation with multifunctional Lactobacillus pentosus strains. Food Control, 2013, 34,<br>96-105.                                                                                        | 5.5 | 37        |
| 12 | Biodiversity and Multifunctional Features of Lactic Acid Bacteria Isolated From Table Olive Biofilms.<br>Frontiers in Microbiology, 2019, 10, 836.                                                      | 3.5 | 35        |
| 13 | Influence of Ripe Table Olive Processing on Oil Characteristics and Composition As Determined by Chemometrics. Journal of Agricultural and Food Chemistry, 2009, 57, 8973-8981.                         | 5.2 | 31        |
| 14 | Evaluation and identification of poly-microbial biofilms on natural green Gordal table olives. Antonie<br>Van Leeuwenhoek, 2015, 108, 597-610.                                                          | 1.7 | 30        |
| 15 | Fermentation profile of green Spanish-style Manzanilla olives according to NaCl content in brine.<br>Food Microbiology, 2015, 49, 56-64.                                                                | 4.2 | 29        |
| 16 | Lactic Acid Bacteria and Yeast Inocula Modulate the Volatile Profile of Spanish-Style Green Table Olive<br>Fermentations. Foods, 2019, 8, 280.                                                          | 4.3 | 28        |
| 17 | Effect of Storage Process on the Sugars, Polyphenols, Color and Microbiological Changes in Cracked<br>Manzanilla-Aloreña Table Olives. Journal of Agricultural and Food Chemistry, 2007, 55, 7434-7444. | 5.2 | 25        |
| 18 | Growth/no growth interfaces of table olive related yeasts for natamycin, citric acid and sodium chloride. International Journal of Food Microbiology, 2012, 155, 257-262.                               | 4.7 | 24        |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Partial purification of iron solutions from ripe table olive processing using ozone and electro-coagulation. Separation and Purification Technology, 2014, 133, 227-235.                                | 7.9 | 23        |
| 20 | Assessing the Challenges in the Application of Potential Probiotic Lactic Acid Bacteria in the Large-Scale Fermentation of Spanish-Style Table Olives. Frontiers in Microbiology, 2017, 8, 915.         | 3.5 | 23        |
| 21 | Microbiological and Physicochemical Changes in Natural Green Heat-Shocked Aloreña de Málaga Table<br>Olives. Frontiers in Microbiology, 2017, 8, 2209.                                                  | 3.5 | 23        |
| 22 | Sterols, fatty alcohol and triterpenic alcohol changes during ripe table olive processing. Food Chemistry, 2009, 117, 127-134.                                                                          | 8.2 | 22        |
| 23 | Evaluating the Effects of Zinc Chloride as a Preservative in Cracked Table Olive Packing. Journal of Food Protection, 2011, 74, 2169-2176.                                                              | 1.7 | 21        |
| 24 | Improvement of the storage process for cracked table olives. Journal of Food Engineering, 2008, 89, 479-487.                                                                                            | 5.2 | 17        |
| 25 | Fortification of table olive packing with the potential probiotic bacteria Lactobacillus pentosus<br>TOMC-LAB2. Frontiers in Microbiology, 2014, 5, 467.                                                | 3.5 | 17        |
| 26 | Genome overview of eight Candida boidinii strains isolated from human activities and wild environments. Standards in Genomic Sciences, 2017, 12, 70.                                                    | 1.5 | 13        |
| 27 | Effect of the Previous Storage of Ripe Olives on the Oil Composition of Fruits. JAOCS, Journal of the American Oil Chemists' Society, 2010, 87, 705-714.                                                | 1.9 | 12        |
| 28 | New Insights into Microbial Diversity of the Traditional Packed Table Olives Aloreña de Málaga<br>through Metataxonomic Analysis. Microorganisms, 2021, 9, 561.                                         | 3.6 | 10        |
| 29 | Microbial Stability and Quality of Seasoned Cracked Green Aloreña Table Olives Packed in Diverse<br>Chloride Salt Mixtures. Journal of Food Protection, 2013, 76, 1923-1932.                            | 1.7 | 9         |
| 30 | Survival of pathogenic and lactobacilli species of fermented olives during simulated human digestion.<br>Frontiers in Microbiology, 2014, 5, 540.                                                       | 3.5 | 9         |
| 31 | Lactobacillus pentosus is the dominant species in spoilt packaged Aloreña de Málaga table olives. LWT -<br>Food Science and Technology, 2016, 70, 252-260.                                              | 5.2 | 8         |
| 32 | Relating starter cultures to volatile profile and potential markers in green Spanish-style table olives<br>by compositional data analysis. Food Microbiology, 2021, 94, 103659.                         | 4.2 | 8         |
| 33 | Multi-Statistical Approach for the Study of Volatile Compounds of Industrial Spoiled Manzanilla<br>Spanish-Style Table Olive Fermentations. Foods, 2021, 10, 1182.                                      | 4.3 | 8         |
| 34 | Influence of Yeasts on the Oil Quality Indexes of Table Olives. Journal of Food Science, 2013, 78, M1208-17.                                                                                            | 3.1 | 7         |
| 35 | The effect of <scp>ZnCl<sub>2</sub></scp> on green Spanishâ€style table olive packaging, a presentation style dependent behaviour. Journal of the Science of Food and Agriculture, 2015, 95, 1670-1677. | 3.5 | 7         |
| 36 | Draft Genome Sequences of Six Lactobacillus pentosus Strains Isolated from Brines of Traditionally<br>Fermented Spanish-Style Green Table Olives. Genome Announcements, 2018, 6, .                      | 0.8 | 7         |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Sensory Assessment by Consumers of Traditional and Potentially Probiotic Green Spanish-Style Table<br>Olives. Frontiers in Nutrition, 2018, 5, 53.                                                      | 3.7 | 7         |
| 38 | Behavior of Vibrio spp. in Table Olives. Frontiers in Microbiology, 2021, 12, 650754.                                                                                                                   | 3.5 | 6         |
| 39 | Shelf-life of traditionally-seasoned <em>Aloreña de Málaga</em> table olives based on package<br>appearance and fruit characteristics. Grasas Y Aceites, 2019, 70, 306.                                 | 0.9 | 5         |
| 40 | The use of multifunctional yeast-lactobacilli starter cultures improves fermentation performance of Spanish-style green table olives. Food Microbiology, 2020, 91, 103497.                              | 4.2 | 5         |
| 41 | A Probabilistic Decision-Making Scoring System for Quality and Safety Management in Aloreña de<br>Málaga Table Olive Processing. Frontiers in Microbiology, 2017, 8, 2326.                              | 3.5 | 4         |
| 42 | Delving into the bacterial diversity of spoiled green Manzanilla Spanish-style table olive fermentations. International Journal of Food Microbiology, 2021, 359, 109415.                                | 4.7 | 4         |
| 43 | Bacterial metataxonomic analysis of industrial Spanish-style green table olive fermentations. Food<br>Control, 2022, 137, 108969.                                                                       | 5.5 | 4         |
| 44 | Fermentation of Olive Fruit. , 2012, , 307-326.                                                                                                                                                         |     | 3         |
| 45 | Data on the application of Functional Data Analysis in food fermentations. Data in Brief, 2016, 9, 401-412.                                                                                             | 1.0 | 3         |
| 46 | Effect of green S panishâ€style M anzanilla packaging conditions on the prevalence of the putative probiotic bacteria Lactobacillus pentosus TOMC ―LAB 2. Food Science and Nutrition, 2016, 4, 181-197. | 3.4 | 3         |
| 47 | Assessment of table olive fermentation by functional data analysis. International Journal of Food<br>Microbiology, 2016, 238, 1-6.                                                                      | 4.7 | 3         |
| 48 | Reduction of the Bitter Taste in Packaged Natural Black Manzanilla Olives by Zinc Chloride. Frontiers in Nutrition, 2018, 5, 102.                                                                       | 3.7 | 2         |
| 49 | Growth response of Saccharomyces cerevisiae strains to stressors associated to the vine cycle. LWT -<br>Food Science and Technology, 2022, 158, 113157.                                                 | 5.2 | 2         |