
Xiaodong Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4663815/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors. Electrochimica Acta, 2015, 166, 1-11.	2.6	386
2	KOH activation of carbon nanofibers. Carbon, 2004, 42, 1723-1729.	5.4	326
3	Preparation and one-step activation of microporous carbon nanofibers for use as supercapacitor electrodes. Carbon, 2013, 51, 290-300.	5.4	169
4	Asphaltene-Based Porous Carbon Nanosheet as Electrode for Supercapacitor. ACS Sustainable Chemistry and Engineering, 2018, 6, 15708-15719.	3.2	113
5	High-performance supercapacitor electrodes based on porous flexible carbon nanofiber paper treated by surface chemical etching. Chemical Engineering Journal, 2014, 249, 216-225.	6.6	112
6	Lignin-based hierarchical porous carbon nanofiber films with superior performance in supercapacitors. Applied Surface Science, 2018, 456, 568-576.	3.1	110
7	Flexible design of gradient multilayer nanofilms coated on carbon nanofibers by atomic layer deposition for enhanced microwave absorption performance. Nano Research, 2018, 11, 530-541.	5.8	83
8	High capacitive performance of hollow activated carbon fibers derived from willow catkins. Applied Surface Science, 2017, 394, 569-577.	3.1	76
9	Exfoliated graphite as a flexible and conductive support for Si-based Li-ion battery anodes. Carbon, 2014, 72, 38-46.	5.4	71
10	Synthesis of nitrogen-doped electrospun carbon nanofibers with superior performance as efficient supercapacitor electrodes in alkaline solution. Electrochimica Acta, 2015, 185, 40-51.	2.6	68
11	Porous worm-like NiMoO4 coaxially decorated electrospun carbon nanofiber as binder-free electrodes for high performance supercapacitors and lithium-ion batteries. Applied Surface Science, 2018, 434, 49-56.	3.1	64
12	N-doped reduced graphene oxide supported Cu2O nanocubes as high active catalyst for CO2 electroreduction to C2H4. Journal of Alloys and Compounds, 2019, 785, 7-12.	2.8	63
13	Bio-inspired hollow activated carbon microtubes derived from willow catkins for supercapacitors with high volumetric performance. Materials Letters, 2016, 174, 249-252.	1.3	62
14	Double Core–Shell Si@C@SiO ₂ for Anode Material of Lithiumâ€Ion Batteries with Excellent Cycling Stability. Chemistry - A European Journal, 2017, 23, 2165-2170.	1.7	62
15	Porous CuCo2O4 microtubes as a promising battery-type electrode material for high-performance hybrid supercapacitors. Journal of Materiomics, 2021, 7, 1358-1368.	2.8	59
16	Structural and chemical synergistic effect of NiCo2S4 nanoparticles and carbon cloth for high performance binder-free asymmetric supercapacitors. Applied Surface Science, 2019, 465, 635-642.	3.1	57
17	Cubic Cu2O on nitrogen-doped carbon shells for electrocatalytic CO2 reduction to C2H4. Carbon, 2019, 146, 218-223.	5.4	56
18	Coal Liquefaction Residues Based Carbon Nanofibers Film Prepared by Electrospinning: An Effective Approach to Coal Waste Management. ACS Sustainable Chemistry and Engineering, 2019, 7, 5742-5750.	3.2	39

XIAODONG TIAN

#	Article	IF	CITATIONS
19	Electrospun Coal Liquefaction Residues/Polyacrylonitrile Composite Carbon Nanofiber Nonwoven Fabrics as High-Performance Electrodes for Lithium/Potassium Batteries. Energy & Fuels, 2020, 34, 2445-2451.	2.5	36
20	Flexible carbon nanofiber mats with improved graphitic structure as scaffolds for efficient all-solid-state supercapacitor. Electrochimica Acta, 2017, 247, 1060-1071.	2.6	34
21	Multi-scale biomass-based carbon microtubes decorated with Ni-Co sulphides nanoparticles for supercapacitors with high rate performance. Electrochimica Acta, 2019, 302, 78-91.	2.6	33
22	Two-pot synthesis of one-dimensional hierarchically porous Co3O4 nanorods as anode for lithium-ion battery. Journal of Alloys and Compounds, 2018, 735, 2446-2452.	2.8	31
23	Synthesis of mesoporous ribbon-shaped graphitic carbon nanofibers with superior performance as efficient supercapacitor electrodes. Electrochimica Acta, 2018, 292, 364-373.	2.6	30
24	Flexible Cross-Linked Electrospun Carbon Nanofiber Mats Derived from Pitch as Dual-Functional Materials for Supercapacitors. Energy & Fuels, 2020, 34, 14975-14985.	2.5	28
25	Hierarchical porous carbon microtubes derived from corn silks for supercapacitors electrode materials. Journal of Electroanalytical Chemistry, 2020, 878, 114704.	1.9	27
26	High-performance activated carbon cathodes from green cokes for Zn-ion hybrid supercapacitors. Fuel, 2022, 310, 122485.	3.4	26
27	Hierarchically Multiporous Carbon Nanotube/Co ₃ O ₄ Composite as an Anode Material for Highâ€Performance Lithium″on Batteries. Chemistry - A European Journal, 2018, 24, 14477-14483.	1.7	25
28	Silylated functionalized silicon-based composite as anode with excellent cyclic performance for lithium-ion battery. Journal of Power Sources, 2018, 385, 84-90.	4.0	22
29	Preparation and one-step activation of nanoporous ultrafine carbon fibers derived from polyacrylonitrile/cellulose blend for used as supercapacitor electrode. Journal of Materials Science, 2018, 53, 4527-4539.	1.7	21
30	Converting furfural residue wastes to carbon materials for high performance supercapacitor. Green Energy and Environment, 2022, 7, 1270-1280.	4.7	20
31	Flexible and cross-linked carbon nanofibers based on coal liquefaction residue for high rate supercapacitors. Journal of Alloys and Compounds, 2022, 903, 163919.	2.8	20
32	Activated pyrolysed bacterial cellulose as electrodes for supercapacitors. Science China Chemistry, 2016, 59, 713-718.	4.2	17
33	Rationally designed hierarchical porous CNFs/Co3O4 nanofiber-based anode for realizing high lithium ion storage. RSC Advances, 2018, 8, 30794-30801.	1.7	16
34	Preparation and electrochemical characteristics of electrospun water-soluble resorcinol/phenol-formaldehyde resin-based carbon nanofibers. RSC Advances, 2015, 5, 40884-40891.	1.7	15
35	A self-assembly strategy for fabricating highly stable silicon/reduced graphene oxide anodes for lithium-ion batteries. New Journal of Chemistry, 2016, 40, 8961-8968.	1.4	15
36	Heteroatoms in situ-doped hierarchical porous hollow-activated carbons for high-performance supercapacitor. Carbon Letters, 2020, 30, 331-344.	3.3	15

XIAODONG TIAN

#	Article	IF	CITATIONS
37	Boosting Zn-ion storage capacity of pitch coke-based activated carbon via pre-oxidation assisted KOH activation strategy. Microporous and Mesoporous Materials, 2022, 333, 111721.	2.2	15
38	Pitchâ€Based Laminated Carbon Formed by Pressure Driving at Low Temperature as Highâ€Capacity Anodes for Lithium Energy Storage Systems. Chemistry - A European Journal, 2020, 26, 16514-16520.	1.7	14
39	An Adsorptionâ€Insertion Mechanism of Potassium in Soft Carbon. Small, 2022, 18, e2105275.	5.2	14
40	Preparation of Si-based composite encapsulated by an incomplete multifunction-coating for lithium storage. Electrochimica Acta, 2019, 295, 75-81.	2.6	13
41	Flexible and cross-linked N, S co-doped carbon nanofiber nonwovens derived from coal liquefaction residue for high performance supercapacitors. Journal of Materials Science, 2022, 57, 9357-9369.	1.7	13
42	Insight into pore structures evolution and applications in lithium-sulfur battery of pitch fractions-based activated carbons. Journal of Alloys and Compounds, 2021, 875, 160067.	2.8	12
43	Symmetric supercapacitor operating at 1.5ÂV with combination of nanosheet-based NiMoO4 microspheres and redox additive electrolyte. Journal of Energy Storage, 2022, 47, 103960.	3.9	12
44	Micro/mesopore carbon spheres derived from sucrose for use in high performance supercapacitors. New Carbon Materials, 2021, 36, 1149-1155.	2.9	12
45	Co3O4 porous nanorod/N-doped reduced graphene oxide composite with fast pseudocapacitive lithium storage for high-performance lithium-ion capacitors. Journal of Materials Science, 2021, 56, 7520-7532.	1.7	10
46	Preparation and capacitive performance of modified carbon black-doped porous carbon nanofibers. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	8
47	Synthesis of Carbon Nanofibers Film from Coal Liquefaction Residues: Effect of HNO ₃ Pretreatment. Energy & Fuels, 2022, 36, 4616-4624.	2.5	7
48	Preparation and Thermal Characterization of Hollow Graphite Fibers/Paraffin Composite Phase Change Material. Coatings, 2022, 12, 160.	1.2	2