Gert Klug

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4663480/publications.pdf

Version: 2024-02-01

		236612	276539
84	1,986	25	41
papers	citations	h-index	g-index
85	85	85	2566
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Prognostic Value of Microvascular Obstruction and Infarct Size, as MeasuredÂby CMR in STEMI Patients. JACC: Cardiovascular Imaging, 2014, 7, 930-939.	2.3	271
2	Prognostic value at 5 years of microvascular obstruction after acute myocardial infarction assessed by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2012, 14, 52.	1.6	86
3	Predictive value of NT-pro BNP after acute myocardial infarction: Relation with acute and chronic infarct size and myocardial function. International Journal of Cardiology, 2011, 147, 118-123.	0.8	77
4	Intramyocardial haemorrhage and prognosis after ST-elevation myocardial infarction. European Heart Journal Cardiovascular Imaging, 2019, 20, 138-146.	0.5	70
5	Association of copeptin with myocardial infarct size and myocardial function after ST segment elevation myocardial infarction. Heart, 2013, 99, 1525-1529.	1.2	65
6	Prognostic Implications of Global Longitudinal Strain by Feature-Tracking Cardiac Magnetic Resonance in ST-Elevation Myocardial Infarction. Circulation: Cardiovascular Imaging, 2019, 12, e009404.	1.3	61
7	Relation of inflammatory markers with myocardial and microvascular injury in patients with reperfused ST-elevation myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 2017, 6, 640-649.	0.4	58
8	Late microvascular obstruction after acute myocardial infarction: Relation with cardiac and inflammatory markers. International Journal of Cardiology, 2012, 157, 391-396.	0.8	56
9	Comparison of an Oscillometric Method with Cardiac Magnetic Resonance for the Analysis of Aortic Pulse Wave Velocity. PLoS ONE, 2015, 10, e0116862.	1.1	52
10	Assessing myocardial recovery following ST-segment elevation myocardial infarction: short- and long-term perspectives using cardiovascular magnetic resonance. Expert Review of Cardiovascular Therapy, 2013, 11, 203-219.	0.6	51
11	Effect of the COVID-19 Pandemic on Treatment Delays in Patients with ST-Segment Elevation Myocardial Infarction. Journal of Clinical Medicine, 2020, 9, 2183.	1.0	51
12	Multi-vendor, multicentre comparison of contrast-enhanced SSFP and T2-STIR CMR for determining myocardium at risk in ST-elevation myocardial infarction. European Heart Journal Cardiovascular Imaging, 2016, 17, 744-753.	0.5	47
13	High-sensitivity troponin T for prediction of left ventricular function and infarct size one year following ST-elevation myocardial infarction. International Journal of Cardiology, 2016, 202, 188-193.	0.8	45
14	In vivo measurement of local aortic pulseâ€wave velocity in mice with MR microscopy at 17.6 tesla. Magnetic Resonance in Medicine, 2009, 61, 1293-1299.	1.9	42
15	Fibroblast growth factor 23 as novel biomarker for early risk stratification after ST-elevation myocardial infarction. Heart, 2017, 103, 856-862.	1.2	41
16	Prognosis-based definition of left ventricular remodeling after ST-elevation myocardial infarction. European Radiology, 2019, 29, 2330-2339.	2.3	40
17	Comparison of wall thickening and ejection fraction by cardiovascular magnetic resonance and echocardiography in acute myocardial infarction. Journal of Cardiovascular Magnetic Resonance, 2009, 11, 22.	1.6	38
18	Prognostic value of left ventricular global function index in patients after ST-segment elevation myocardial infarction. European Heart Journal Cardiovascular Imaging, 2016, 17, 169-176.	0.5	38

#	Article	IF	Citations
19	Relation of Lowâ€Density Lipoprotein Cholesterol With Microvascular Injury and Clinical Outcome in Revascularized STâ€Elevation Myocardial Infarction. Journal of the American Heart Association, 2017, 6, .	1.6	37
20	Role of biomarkers in assessment of early infarct size after successful p-PCI for STEMI. Clinical Research in Cardiology, 2011, 100, 501-510.	1.5	35
21	Impact of COVID-19 pandemic restrictions on ST-elevation myocardial infarction: a cardiac magnetic resonance imaging study. European Heart Journal, 2022, 43, 1141-1153.	1.0	35
22	Quantification of regional functional improvement of infarcted myocardium after primary PTCA by contrastâ€enhanced magnetic resonance imaging. Journal of Magnetic Resonance Imaging, 2009, 29, 298-304.	1.9	31
23	Prognostic Value of Aortic Stiffness in Patients After STâ€Elevation Myocardial Infarction. Journal of the American Heart Association, 2017, 6, .	1.6	31
24	Takotsubo Cardiomyopathy in Traumatic Brain Injury. Neurocritical Care, 2017, 26, 284-291.	1.2	29
25	Galectin-3: Relation to infarct scar and left ventricular function after myocardial infarction. International Journal of Cardiology, 2013, 163, 335-337.	0.8	27
26	Acute kidney injury is associated with microvascular myocardial damage following myocardial infarction. Kidney International, 2017, 92, 743-750.	2.6	27
27	Is MRI equivalent to CT in the guidance of TAVR? A pilot study. European Radiology, 2018, 28, 4625-4634.	2.3	26
28	Global longitudinal strain by feature tracking for optimized prediction of adverse remodeling after ST-elevation myocardial infarction. Clinical Research in Cardiology, 2021, 110, 61-71.	1.5	25
29	Novel biomarkers predicting cardiac function after acute myocardial infarction. British Medical Bulletin, 2016, 119, 63-74.	2.7	23
30	Copeptin Testing in Acute Myocardial Infarction: Ready for Routine Use?. Disease Markers, 2015, 2015, 1-9.	0.6	22
31	Biomarker assessment for early infarct size estimation in ST-elevation myocardial infarction. European Journal of Internal Medicine, 2019, 64, 57-62.	1.0	21
32	Prognostic implications of psoas muscle area in patients undergoing transcatheter aortic valve implantation. European Journal of Cardio-thoracic Surgery, 2019, 55, 210-216.	0.6	20
33	Acute myocardial infarction as a manifestation of systemic vasculitis. Wiener Klinische Wochenschrift, 2016, 128, 841-843.	1.0	19
34	C-reactive protein velocity predicts microvascular pathology after acute ST-elevation myocardial infarction. International Journal of Cardiology, 2021, 338, 30-36.	0.8	19
35	Multimarker approach for the prediction of microvascular obstruction after acute ST-segment elevation myocardial infarction: a prospective, observational study. BMC Cardiovascular Disorders, 2016, 16, 239.	0.7	18
36	Fetuin-A is related to infarct size, left ventricular function and remodelling after acute STEMI. Open Heart, 2015, 2, e000244.	0.9	17

#	Article	IF	CITATIONS
37	ACEF score adapted to ST-elevation myocardial infarction patients: The ACEF-STEMI score. International Journal of Cardiology, 2018, 264, 18-24.	0.8	17
38	Impact of infarct location and size on clinical outcome after ST-elevation myocardial infarction treated by primary percutaneous coronary intervention. International Journal of Cardiology, 2020, 301, 14-20.	0.8	16
39	Combined biomarker testing for the prediction of left ventricular remodelling in ST-elevation myocardial infarction. Open Heart, 2016, 3, e000485.	0.9	15
40	Circulating corin concentrations are related to infarct size in patients after ST-segment elevation myocardial infarction. International Journal of Cardiology, 2015, 192, 22-23.	0.8	14
41	Persistent T-wave inversion predicts myocardial damage after ST-elevation myocardial infarction. International Journal of Cardiology, 2017, 241, 76-82.	0.8	14
42	Non-contrast MRI protocol for TAVI guidance: quiescent-interval single-shot angiography in comparison with contrast-enhanced CT. European Radiology, 2020, 30, 4847-4856.	2.3	14
43	Left ventricular global function index: Relation with infarct characteristics and left ventricular ejection fraction after STEMI. International Journal of Cardiology, 2014, 175, 579-581.	0.8	13
44	High sensitivity C-reactive protein is associated with worse infarct healing after revascularized ST-elevation myocardial infarction. International Journal of Cardiology, 2021, 328, 191-196.	0.8	13
45	Global longitudinal strain improves risk assessment after ST-segment elevation myocardial infarction: a comparative prognostic evaluation of left ventricular functional parameters. Clinical Research in Cardiology, 2021, 110, 1599-1611.	1.5	13
46	Use and limitations of Cardiac Magnetic Resonance derived measures of aortic stiffness in patients after acute myocardial infarction. Magnetic Resonance Imaging, 2014, 32, 1259-1265.	1.0	12
47	Association of Myocardial Injury With Serum Procalcitonin Levels in Patients With ST-Elevation Myocardial Infarction. JAMA Network Open, 2020, 3, e207030.	2.8	12
48	Prognostic significance of transaminases after acute ST-elevation myocardial infarction: insights from a cardiac magnetic resonance study. Wiener Klinische Wochenschrift, 2015, 127, 843-850.	1.0	11
49	N-terminal pro-B-type natriuretic peptide is associated with aortic stiffness in patients presenting with acute myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 2016, 5, 560-567.	0.4	11
50	Obesity paradox in ST-elevation myocardial infarction: is it all about infarct size?. European Heart Journal Quality of Care & Dutcomes, 2019, 5, 180-182.	1.8	11
51	Self-navigated 3D whole-heart MRA for non-enhanced surveillance of thoracic aortic dilation: A comparison to CTA. Magnetic Resonance Imaging, 2021, 76, 123-130.	1.0	11
52	Association of plasma interleukin-6 with infarct size, reperfusion injury, and adverse remodelling after ST-elevation myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 2022, 11, 113-123.	0.4	11
53	Long-term predictive value of copeptin after acute myocardial infarction: A cardiac magnetic resonance study. International Journal of Cardiology, 2014, 172, e359-e360.	0.8	9
54	Heart rate and left ventricular adverse remodelling after ST-elevation myocardial infarction. International Journal of Cardiology, 2016, 219, 339-344.	0.8	9

#	Article	IF	CITATIONS
55	Thyroid-stimulating hormone and adverse left ventricular remodeling following ST-segment elevation myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 2019, 8, 717-726.	0.4	9
56	Biomarkers of Hemodynamic Stress and Aortic Stiffness after STEMI: A Cross-Sectional Analysis. Disease Markers, 2015, 2015, 1-7.	0.6	8
57	Baseline LV ejection fraction by cardiac magnetic resonance and 2D echocardiography after ST-elevation myocardial infarction – influence of infarct location and prognostic impact. European Radiology, 2020, 30, 663-671.	2.3	8
58	Association of C-Reactive Protein Velocity with Early Left Ventricular Dysfunction in Patients with First ST-Elevation Myocardial Infarction. Journal of Clinical Medicine, 2021, 10, 5494.	1.0	8
59	Association between inflammation and left ventricular thrombus formation following ST-elevation myocardial infarction. International Journal of Cardiology, 2022, 361, 1-6.	0.8	8
60	Utility of NT-proBNP in predicting infarct scar and left ventricular dysfunction at a chronic stage after myocardial infarction. European Journal of Internal Medicine, 2016, 29, e16-e18.	1.0	7
61	Determinants and prognostic relevance of aortic stiffness in patients with recent ST-elevation myocardial infarction. International Journal of Cardiovascular Imaging, 2022, 38, 237-247.	0.7	7
62	Cardiac index after acute ST-segment elevation myocardial infarction measured with phase-contrast cardiac magnetic resonance imaging. European Radiology, 2016, 26, 1999-2008.	2.3	6
63	Relationship between admission Q waves and microvascular injury in patients with ST-elevation myocardial infarction treated with primary percutaneous coronary intervention. International Journal of Cardiology, 2019, 297, 1-7.	0.8	6
64	Complete versus simplified Selvester QRS score for infarct severity assessment in ST-elevation myocardial infarction. BMC Cardiovascular Disorders, 2019, 19, 285.	0.7	6
65	Determinants and prognostic value of cardiac magnetic resonance imaging-derived infarct characteristics in non-ST-elevation myocardial infarction. European Heart Journal Cardiovascular Imaging, 2020, 21, 67-76.	0.5	5
66	Microvascular obstruction and diastolic dysfunction after STEMI: An important link?. International Journal of Cardiology, 2020, 301, 40-41.	0.8	5
67	A novel approach to determine aortic valve area with phase-contrastÂcardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2022, 24, 7.	1.6	5
68	Serpentine-like right atrial mass and fulminant bilateral pulmonary embolism during treatment with rivaroxaban. International Journal of Cardiovascular Imaging, 2016, 32, 1001-1002.	0.7	4
69	Impact of posteromedial papillary muscle infarction on mitral regurgitation during ST-segment elevation myocardial infarction. International Journal of Cardiovascular Imaging, 2020, 36, 503-511.	0.7	4
70	Impact of smoking on cardiac magnetic resonance infarct characteristics and clinical outcome in patients with non-ST-elevation myocardial infarction. International Journal of Cardiovascular Imaging, 2019, 35, 1079-1087.	0.7	3
71	Estimating the extent of myocardial damage in patients with STEMI using the DETERMINE score. Open Heart, 2021, 8, e001538.	0.9	3
72	Myocarditis diagnosed by magnetic resonance imaging. Wiener Klinische Wochenschrift, 2006, 118, 21-21.	1.0	2

#	Article	IF	CITATIONS
73	Left ventricular unloading by percutaneous mechanical circulatory support in takotsubo syndrome with severe cardiogenic shock. European Heart Journal, 2019, 40, 2919-2919.	1.0	2
74	A solid mass trapped in the right atrium. European Heart Journal, 2015, 36, 2894.1-2894.	1.0	1
75	Plaque Imaging in Murine Models of Cardiovascular Disease. Methods in Molecular Biology, 2011, 771, 407-420.	0.4	1
76	Cardiac magnetic resonance imaging improves prognostic stratification of patients with ST-elevation myocardial infarction and preserved ejection fraction. European Heart Journal Open, 2021, $1, \dots$	0.9	1
77	Pulsus paradoxus due to a tumorous mass constricting the heart. European Heart Journal Cardiovascular Imaging, 2016, 17, 410-410.	0.5	0
78	Massive Pulmonary Embolism With a Large Thrombus Trapped in the Patent Foramen Ovale. Circulation: Cardiovascular Imaging, 2020, 13, e010501.	1.3	0
79	Antithrombotic Strategies in Patients With Atrial Fibrillation and Percutaneous Coronary Intervention. JAMA Cardiology, 2021, 6, 240.	3.0	0
80	Prognostic value of depressed cardiac index after STEMI: a phase-contrast magnetic resonance study. European Heart Journal: Acute Cardiovascular Care, 2022, 11, 53-61.	0.4	0
81	Incidental diagnosis of a complicated left ventricular non-compaction cardiomyopathy mimicking a cardiac haematoma. European Heart Journal - Case Reports, 2021, 5, ytab194.	0.3	0
82	The role of circulating microRNAs in acute coronary syndromes: ready for prime time?. Annals of Translational Medicine, 2016, 4, 537-537.	0.7	0
83	Mechanical complications after STEMI: Another collateral damage of the COVID-19 pandemic. International Journal of Cardiology, 2021, , .	0.8	0
84	The classical 12â€'lead ECG: Much more to offer than just a diagnosis in STEMI?. International Journal of Cardiology, 2022, 349, 29-30.	0.8	0