Xing-Gui Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4663125/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DFT studies of dry reforming of methane on Ni catalyst. Catalysis Today, 2009, 148, 260-267.	2.2	320
2	Mechanistic Insight into Size-Dependent Activity and Durability in Pt/CNT Catalyzed Hydrolytic Dehydrogenation of Ammonia Borane. Journal of the American Chemical Society, 2014, 136, 16736-16739.	6.6	273
3	First-Principles Calculations of Propane Dehydrogenation over PtSn Catalysts. ACS Catalysis, 2012, 2, 1247-1258.	5.5	235
4	<i>In Situ</i> Formation of Cobalt Oxide Nanocubanes as Efficient Oxygen Evolution Catalysts. Journal of the American Chemical Society, 2015, 137, 4223-4229.	6.6	212
5	Bi2S3 nanostructures: A new photocatalyst. Nano Research, 2010, 3, 379-386.	5.8	209
6	Unique reactivity in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane. Chemical Communications, 2014, 50, 2142.	2.2	207
7	Selective Hydrogenation of Acetylene over Pd-In/Al ₂ O ₃ Catalyst: Promotional Effect of Indium and Composition-Dependent Performance. ACS Catalysis, 2017, 7, 7835-7846.	5.5	194
8	Size-Dependent Reaction Mechanism and Kinetics for Propane Dehydrogenation over Pt Catalysts. ACS Catalysis, 2015, 5, 6310-6319.	5.5	189
9	DFT study of propane dehydrogenation on Pt catalyst: effects of step sites. Physical Chemistry Chemical Physics, 2011, 13, 3257.	1.3	173
10	Density Functional Theory-Assisted Microkinetic Analysis of Methane Dry Reforming on Ni Catalyst. Industrial & Engineering Chemistry Research, 2015, 54, 5901-5913.	1.8	158
11	Palladium Nanoparticles Confined in the Cages of MIL-101: An Efficient Catalyst for the One-Pot Indole Synthesis in Water. ACS Catalysis, 2011, 1, 1604-1612.	5.5	151
12	Size Dependence of Pt Catalysts for Propane Dehydrogenation: from Atomically Dispersed to Nanoparticles. ACS Catalysis, 2020, 10, 12932-12942.	5.5	144
13	The promoting role of Ag in Ni-CeO2 catalyzed CH4-CO2 dry reforming reaction. Applied Catalysis B: Environmental, 2015, 165, 43-56.	10.8	140
14	Tuning the size and shape of Fe nanoparticles on carbon nanofibers for catalytic ammonia decomposition. Applied Catalysis B: Environmental, 2011, 101, 189-196.	10.8	136
15	Coke Formation on Pt–Sn/Al2O3 Catalyst in Propane Dehydrogenation: Coke Characterization and Kinetic Study. Topics in Catalysis, 2011, 54, 888-896.	1.3	132
16	Insights into HÃǥg Iron-Carbide-Catalyzed Fischer–Tropsch Synthesis: Suppression of CH ₄ Formation and Enhancement of C–C Coupling on χ-Fe ₅ C ₂ (510). ACS Catalysis, 2015, 5, 2203-2208.	5.5	122
17	Dry reforming of methane on Ni-Fe-MgO catalysts: Influence of Fe on carbon-resistant property and kinetics. Applied Catalysis B: Environmental, 2020, 264, 118497.	10.8	122
18	Simultaneously Enhanced Stability and Selectivity for Propene Epoxidation with H ₂ and O ₂ on Au Catalysts Supported on Nano-Crystalline Mesoporous TS-1. ACS Catalysis, 2017, 7, 2668-2675.	5.5	120

#	Article	IF	CITATIONS
19	Ammonia decomposition on Fe(1 1 0), Co(1 1 1) and Ni(1 1 1) surfaces: A density functional theory study. Journal of Molecular Catalysis A, 2012, 357, 81-86.	4.8	114
20	Adsorption Site Regulation to Guide Atomic Design of Ni–Ga Catalysts for Acetylene Semiâ€Hydrogenation. Angewandte Chemie - International Edition, 2020, 59, 11647-11652.	7.2	111
21	Coke Formation on Pt–Sn/Al ₂ O ₃ Catalyst for Propane Dehydrogenation. Industrial & Engineering Chemistry Research, 2018, 57, 8647-8654.	1.8	106
22	CO Activation Pathways of Fischer–Tropsch Synthesis on χ-Fe5C2 (510): Direct versus Hydrogen-Assisted CO Dissociation. Journal of Physical Chemistry C, 2014, 118, 10170-10176.	1.5	104
23	Carbon nanofiber-supported palladium nanoparticles as potential recyclable catalysts for the Heck reaction. Applied Catalysis A: General, 2009, 352, 243-250.	2.2	98
24	Carbon dioxide reforming of methane over promoted NixMg1â^'xO (111) platelet catalyst derived from solvothermal synthesis. Applied Catalysis B: Environmental, 2014, 148-149, 177-190.	10.8	94
25	Enhanced Catalytic Performance for Propene Epoxidation with H ₂ and O ₂ over Bimetallic Au–Ag/Uncalcined Titanium Silicate-1 Catalysts. ACS Catalysis, 2018, 8, 7799-7808.	5.5	94
26	Role of electronic properties in partition of radical and nonradical processes of carbocatalysis toward peroxymonosulfate activation. Carbon, 2019, 153, 73-80.	5.4	93
27	Au nanoparticles deposited on the external surfaces of TS-1: Enhanced stability and activity for direct propylene epoxidation with H2 and O2. Applied Catalysis B: Environmental, 2014, 150-151, 396-401.	10.8	91
28	Kinetics of propane dehydrogenation over Pt–Sn/Al2O3 catalyst. Applied Catalysis A: General, 2011, 398, 18-26.	2.2	90
29	Reaction mechanism and kinetics for hydrolytic dehydrogenation of ammonia borane on a Pt/CNT catalyst. AICHE Journal, 2017, 63, 60-65.	1.8	90
30	Facile Synthesis of Highly Luminescent Mn-Doped ZnS Nanocrystals. Inorganic Chemistry, 2011, 50, 10432-10438.	1.9	89
31	Hierarchical Silicoaluminophosphate Catalysts with Enhanced Hydroisomerization Selectivity by Directing the Orientated Assembly of Premanufactured Building Blocks. ACS Catalysis, 2017, 7, 5887-5902.	5.5	87
32	Insights into size-dependent activity and active sites of Au nanoparticles supported on TS-1 for propene epoxidation with H2 and O2. Journal of Catalysis, 2014, 317, 99-104.	3.1	85
33	Effect of carbon nanofiber microstructure on oxygen reduction activity of supported palladium electrocatalyst. Electrochemistry Communications, 2007, 9, 895-900.	2.3	81
34	MCM-41 supported Co Mo bimetallic catalysts for enhanced hydrogen production by ammonia decomposition. Chemical Engineering Journal, 2012, 207-208, 103-108.	6.6	81
35	A single source method to generate Ru-Ni-MgO catalysts for methane dry reforming and the kinetic effect of Ru on carbon deposition and gasification. Applied Catalysis B: Environmental, 2018, 233, 143-159.	10.8	79
36	Carbon mediated catalysis: A review on oxidative dehydrogenation. Chinese Journal of Catalysis, 2014, 35, 824-841.	6.9	78

#	Article	IF	CITATIONS
37	Density functional study of the chemisorption of C1, C2 and C3 intermediates in propane dissociation on Pt(111). Journal of Molecular Catalysis A, 2010, 321, 42-49.	4.8	77
38	One-Pot Noninjection Synthesis of Cu-Doped Zn _{<i>x</i>} Cd _{1-<i>x</i>} S Nanocrystals with Emission Color Tunable over Entire Visible Spectrum. Inorganic Chemistry, 2012, 51, 3579-3587.	1.9	76
39	Effects of zeolite particle size and internal grain boundaries on Pt/Beta catalyzed isomerization of n-pentane. Journal of Catalysis, 2018, 360, 152-159.	3.1	76
40	Mechanistic and kinetic insights into the Pt-Ru synergy during hydrogen generation from ammonia borane over PtRu/CNT nanocatalysts. Journal of Catalysis, 2017, 356, 186-196.	3.1	73
41	Ir–Re alloy as a highly active catalyst for the hydrogenolysis of glycerol to 1,3-propanediol. Catalysis Science and Technology, 2015, 5, 1540-1547.	2.1	71
42	Charge-Tuned CO Activation over a χ-Fe ₅ C ₂ Fischer–Tropsch Catalyst. ACS Catalysis, 2018, 8, 2709-2714.	5.5	70
43	Towards an efficient CoMo/γ-Al 2 O 3 catalyst using metal amine metallate as an active phase precursor: Enhanced hydrogen production by ammonia decomposition. International Journal of Hydrogen Energy, 2014, 39, 12490-12498.	3.8	69
44	Hierarchical structured α-Al ₂ O ₃ supported S-promoted Fe catalysts for direct conversion of syngas to lower olefins. Chemical Communications, 2015, 51, 8853-8856.	2.2	69
45	Performance-Indicator-Oriented Concurrent Subspace Process Monitoring Method. IEEE Transactions on Industrial Electronics, 2019, 66, 5535-5545.	5.2	69
46	Tuning the composition of metastable Co Ni Mg100â^'â^'(OH)(OCH3) nanoplates for optimizing robust methane dry reforming catalyst. Journal of Catalysis, 2015, 330, 106-119.	3.1	67
47	Origin of synergistic effect over Ni-based bimetallic surfaces: A density functional theory study. Journal of Chemical Physics, 2012, 137, 014703.	1.2	64
48	Au/uncalcined TS-1 catalysts for direct propene epoxidation with H2 and O2: Effects of Si/Ti molar ratio and Au loading. Chemical Engineering Journal, 2015, 278, 234-239.	6.6	64
49	First-principles calculations of ammonia decomposition on Ni(110) surface. Surface Science, 2012, 606, 549-553.	0.8	57
50	Carbon Nanotubes as Support in the Platinum atalyzed Hydrolytic Dehydrogenation of Ammonia Borane. ChemSusChem, 2015, 8, 2927-2931.	3.6	57
51	Modified carbon nanotubes by KMnO ₄ supported iron Fischer–Tropsch catalyst for the direct conversion of syngas to lower olefins. Journal of Materials Chemistry A, 2015, 3, 4560-4567.	5.2	57
52	Iron-based Fischer–Tropsch synthesis of lower olefins: The nature of χ-Fe5C2 catalyst and why and how to introduce promoters. Journal of Energy Chemistry, 2016, 25, 911-916.	7.1	57
53	Structure sensitivity of ammonia decomposition over Ni catalysts: A computational and experimental study. Fuel Processing Technology, 2013, 108, 112-117.	3.7	56
54	Controlling and Formation Mechanism of Oxygen-Containing Groups on Graphite Oxide. Industrial & amp; Engineering Chemistry Research, 2014, 53, 253-258.	1.8	56

#	Article	IF	CITATIONS
55	Fabrication of K-promoted iron/carbon nanotubes composite catalysts for the Fischer–Tropsch synthesis of lower olefins. Journal of Energy Chemistry, 2016, 25, 311-317.	7.1	55
56	Controlling Selectivity in Unsaturated Aldehyde Hydrogenation Using Single-Site Alloy Catalysts. ACS Catalysis, 2019, 9, 9150-9157.	5.5	55
57	Effect of steam addition on the structure and activity of Pt–Sn catalysts in propane dehydrogenation. Chemical Engineering Journal, 2015, 278, 240-248.	6.6	54
58	Active sites engineering of Pt/CNT oxygen reduction catalysts by atomic layer deposition. Journal of Energy Chemistry, 2020, 45, 59-66.	7.1	54
59	Experimental investigation of the flow distribution of a 2-dimensional constructal distributor. Experimental Thermal and Fluid Science, 2008, 33, 77-83.	1.5	53
60	Balancing the Microâ€Mesoporosity for Activity Maximization of Nâ€Doped Carbonaceous Electrocatalysts for the Oxygen Reduction Reaction. ChemSusChem, 2019, 12, 1017-1025.	3.6	53
61	Kinetic Study of the Hydrogenation of Unsaturated Aldehydes Promoted by CuPt _{<i>x</i>} /SBA-15 Single-Atom Alloy (SAA) Catalysts. ACS Catalysis, 2020, 10, 3431-3443.	5.5	53
62	Experimental study of constructal distributor for flow equidistribution in a mini crossflow heat exchanger (MCHE). Chemical Engineering and Processing: Process Intensification, 2008, 47, 229-236.	1.8	52
63	Effect of Ag on the control of Ni-catalyzed carbon formation: A density functional theory study. Catalysis Today, 2012, 186, 54-62.	2.2	52
64	Au/TS-1 catalyst prepared by deposition–precipitation method for propene epoxidation with H2/O2: Insights into the effects of slurry aging time and Si/Ti molar ratio. Journal of Catalysis, 2015, 325, 128-135.	3.1	51
65	Electrophoretic deposition of network-like carbon nanofibers as a palladium catalyst support for ethanol oxidation in alkaline media. Carbon, 2010, 48, 3323-3329.	5.4	50
66	Single-Crystal Bi ₂ S ₃ Nanosheets Growing via Attachment–Recrystallization of Nanorods. Inorganic Chemistry, 2011, 50, 7729-7734.	1.9	50
67	Carbon Nanofiber-Supported Ru Catalysts for Hydrogen Evolution by Ammonia Decomposition. Chinese Journal of Catalysis, 2010, 31, 979-986.	6.9	48
68	Tuning selectivity and stability in propane dehydrogenation by shaping Pt particles: A combined experimental and DFT study. Journal of Molecular Catalysis A, 2014, 395, 329-336.	4.8	48
69	High-Throughput Screening of Alloy Catalysts for Dry Methane Reforming. ACS Catalysis, 2021, 11, 8881-8894.	5.5	47
70	Catalytic hydrogenation of benzene to cyclohexene on Ru(0001) from density functional theory investigationsâ~†. Catalysis Today, 2011, 160, 234-241.	2.2	46
71	Understanding Coâ€Mo Catalyzed Ammonia Decomposition: Influence of Calcination Atmosphere and Identification of Active Phase. ChemCatChem, 2016, 8, 938-945.	1.8	46
72	Enhanced stability for propene epoxidation with H2 and O2 over wormhole-like hierarchical TS-1 supported Au nanocatalyst. Chemical Engineering Journal, 2019, 377, 119954.	6.6	46

#	Article	IF	CITATIONS
73	A comprehensive kinetics study on non-isothermal pyrolysis of kerogen from Green River oil shale. Chemical Engineering Journal, 2019, 377, 120275.	6.6	46
74	Facile Synthesis of Monodisperse CdS Nanocrystals via Microreaction. Nanoscale Research Letters, 2010, 5, 130-137.	3.1	45
75	Manipulating Gold Spatial Location on Titanium Silicalite-1 To Enhance the Catalytic Performance for Direct Propene Epoxidation with H ₂ and O ₂ . ACS Catalysis, 2018, 8, 10649-10657.	5.5	44
76	Boosting HER Performance of Pt-Based Catalysts Immobilized on Functionalized Vulcan Carbon by Atomic Layer Deposition. Frontiers in Materials, 2019, 6, .	1.2	44
77	Beyond the Reverse Horiuti–Polanyi Mechanism in Propane Dehydrogenation over Pt Catalysts. ACS Catalysis, 2020, 10, 14887-14902.	5.5	44
78	Microstructure effect of carbon nanofiber on electrocatalytic oxygen reduction reaction. Catalysis Today, 2008, 131, 270-277.	2.2	43
79	Recyclable hollow Pd–Fe nanospheric catalyst for Sonogashira-, Heck-, and Ullmann-type coupling reactions of aryl halide in aqueous media. Journal of Colloid and Interface Science, 2010, 349, 613-619.	5.0	43
80	Carbon nanofiber supported bimetallic PdAu nanoparticles for formic acid electrooxidation. Journal of Power Sources, 2012, 215, 130-134.	4.0	43
81	Pore network modeling of catalyst deactivation by coking, from single site to particle, during propane dehydrogenation. AICHE Journal, 2019, 65, 140-150.	1.8	43
82	Controllable synthesis of carbon nanofiber supported Pd catalyst for formic acid electrooxidation. International Journal of Hydrogen Energy, 2012, 37, 7373-7377.	3.8	42
83	Crystallization of ATO silicoaluminophosphates nanocrystalline spheroids using a phase-transfer synthetic strategy for n-heptane hydroisomerization. Journal of Catalysis, 2018, 364, 308-327.	3.1	42
84	Improved selectivity and coke resistance of core-shell alloy catalysts for propane dehydrogenation from first principles and microkinetic analysis. Chemical Engineering Journal, 2019, 377, 120049.	6.6	42
85	Unraveling the non-classic crystallization of SAPO-34 in a dry gel system towards controlling meso-structure with the assistance of growth inhibitor: Growth mechanism, hierarchical structure control and catalytic properties. Microporous and Mesoporous Materials, 2016, 225, 74-87.	2.2	41
86	Rational Design of Single-Atom-Doped Ga ₂ O ₃ Catalysts for Propane Dehydrogenation: Breaking through Volcano Plot by Lewis Acid–Base Interactions. ACS Catalysis, 2021, 11, 5135-5147.	5.5	41
87	Modeling of fishbone-type carbon nanofibers with cone-helix structures. Carbon, 2012, 50, 4359-4372.	5.4	39
88	Composition of the Green Oil in Hydrogenation of Acetylene over a Commercial Pdâ€Ag/Al ₂ O ₃ Catalyst. Chemical Engineering and Technology, 2016, 39, 865-873.	0.9	39
89	Tuning Adsorption and Catalytic Properties of α-Cr ₂ O ₃ and ZnO in Propane Dehydrogenation by Creating Oxygen Vacancy and Doping Single Pt Atom: A Comparative First-Principles Study. Industrial & Engineering Chemistry Research, 2019, 58, 10199-10209.	1.8	38
90	CNFs-supported Pt catalyst for hydrogen evolution from decalin. Catalysis Communications, 2009, 10, 815-818.	1.6	37

#	Article	IF	CITATIONS
91	Understanding the Role of Internal Diffusion Barriers in Pt/Beta Zeolite Catalyzed Isomerization of <i>n</i> â€Heptane. Angewandte Chemie - International Edition, 2020, 59, 1548-1551.	7.2	37
92	A hybrid neural network-first principles model for fixed-bed reactor. Chemical Engineering Science, 1999, 54, 2521-2526.	1.9	36
93	Impurity Effect of <scp>l</scp> -Valine on <scp>l</scp> -Alanine Crystal Growth. Crystal Growth and Design, 2013, 13, 1295-1300.	1.4	36
94	Synthesis of hierarchically porous ZSM-5 zeolites by steam-assisted crystallization of dry gels silanized with short-chain organosilanes. New Journal of Chemistry, 2014, 38, 5808-5816.	1.4	36
95	Structural and Kinetics Understanding of Support Effects in Pd-Catalyzed Semi-Hydrogenation of Acetylene. Engineering, 2021, 7, 103-110.	3.2	36
96	Platinum/carbon nanofiber nanocomposite synthesized by electrophoretic deposition as electrocatalyst for oxygen reduction. Journal of Power Sources, 2008, 175, 211-216.	4.0	35
97	Release of interfacial thermal stress and accompanying improvement of interfacial adhesion in carbon fiber reinforced epoxy resin composites: Induced by diblock copolymers. Composites Part A: Applied Science and Manufacturing, 2012, 43, 990-996.	3.8	35
98	Eco-friendly one-pot synthesis of highly dispersible functionalized graphene nanosheets with free amino groups. Nanotechnology, 2013, 24, 045609.	1.3	35
99	Size Effects of Pt Nanoparticles Supported on Carbon Nanotubes for Selective Oxidation of Glycerol in a Base-Free Condition. Industrial & Engineering Chemistry Research, 2014, 53, 16309-16315.	1.8	35
100	Nonclassical from-shell-to-core growth of hierarchically organized SAPO-11 with enhanced catalytic performance in hydroisomerization of n-heptane. RSC Advances, 2016, 6, 32523-32533.	1.7	35
101	Au/TSâ€l catalyst for propene epoxidation with H ₂ /O ₂ : A novel strategy to enhance stability by tuning charging sequence. AICHE Journal, 2016, 62, 3963-3972.	1.8	35
102	Cost-efficient core-shell TS-1/silicalite-1 supported Au catalysts: Towards enhanced stability for propene epoxidation with H2 and O2. Chemical Engineering Journal, 2019, 377, 119927.	6.6	35
103	Synergistic Pt-WO3 Dual Active Sites to Boost Hydrogen Production from Ammonia Borane. IScience, 2020, 23, 100922.	1.9	35
104	Size effects of Pt-Re bimetallic catalysts for glycerol hydrogenolysis. Catalysis Today, 2014, 234, 208-214.	2.2	34
105	Boosting Sizeâ€Selective Hydrogen Combustion in the Presence of Propene Using Controllable Metal Clusters Encapsulated in Zeolite. Angewandte Chemie - International Edition, 2018, 57, 9770-9774.	7.2	34
106	Kinetics Insights and Active Sites Discrimination of Pd-Catalyzed Selective Hydrogenation of Acetylene. Industrial & Engineering Chemistry Research, 2019, 58, 1888-1895.	1.8	34
107	Effect of External Surface Diffusion Barriers on Platinum/Betaâ€Catalyzed Isomerization of <i>n</i> â€Pentane. Angewandte Chemie - International Edition, 2021, 60, 14394-14398.	7.2	34
108	On the ensemble requirement of fully selective chemical looping methane partial oxidation over La-Fe-based perovskites. Applied Catalysis B: Environmental, 2022, 301, 120788.	10.8	34

#	Article	IF	CITATIONS
109	Synthesis of highly dispersed and active palladium/carbon nanofiber catalyst for formic acid electrooxidation. Journal of Power Sources, 2011, 196, 4609-4612.	4.0	33
110	Hollow Pt-Ni alloy nanospheres with tunable chamber structure and enhanced activity. Journal of Materials Chemistry, 2011, 21, 18447.	6.7	32
111	Reaction mechanism and kinetics for Pt/CNTs catalyzed base-free oxidation of glycerol. Chemical Engineering Science, 2019, 203, 228-236.	1.9	32
112	Modeling of a fixed-bed reactor using the K-L expansion and neural networks. Chemical Engineering Science, 1996, 51, 2179-2188.	1.9	31
113	In Situ Production of Ni Catalysts at the Tips of Carbon Nanofibers and Application in Catalytic Ammonia Decomposition. Industrial & Engineering Chemistry Research, 2013, 52, 1854-1858.	1.8	31
114	Structural and kinetic insights into Pt/CNT catalysts during hydrogen generation from ammonia borane. Chemical Engineering Science, 2018, 192, 1242-1251.	1.9	31
115	Uncalcined TSâ€2 immobilized Au nanoparticles as a bifunctional catalyst to boost direct propylene epoxidation with H ₂ and O ₂ . AICHE Journal, 2020, 66, e16815.	1.8	31
116	Adsorption Site Regulation to Guide Atomic Design of Ni–Ga Catalysts for Acetylene Semiâ€Hydrogenation. Angewandte Chemie, 2020, 132, 11744-11749.	1.6	31
117	Toward CH ₄ dissociation and C diffusion during Ni/Fe-catalyzed carbon nanofiber growth: A density functional theory study. Journal of Chemical Physics, 2011, 134, 134704.	1.2	30
118	Synthesis of hierarchical ZSM-5 zeolite using CTAB interacting with carboxyl-ended organosilane as a mesotemplate. RSC Advances, 2014, 4, 14471.	1.7	30
119	Molecular‣evel Insights into the Notorious CO Poisoning of Platinum Catalyst. Angewandte Chemie - International Edition, 2022, 61, .	7.2	30
120	Nucleation kinetics of lovastatin in different solvents from metastable zone widths. Chemical Engineering Science, 2015, 133, 62-69.	1.9	29
121	Optimizing spatial pore-size and porosity distributions of adsorbents for enhanced adsorption and desorption performance. Chemical Engineering Science, 2015, 132, 108-117.	1.9	29
122	Thermal stability of TPA template and size-dependent selectivity of uncalcined TS-1 supportedÂAu catalyst for propene epoxidation with H ₂ and O ₂ . RSC Advances, 2016, 6, 44050-44056.	1.7	29
123	Manipulating the mesostructure of silicoaluminophosphate SAPO-11 <i>via</i> tumbling-assisted, oriented assembly crystallization: a pathway to enhance selectivity in hydroisomerization. Catalysis Science and Technology, 2018, 8, 5044-5061.	2.1	29
124	Surface Engineering and Kinetics Behaviors of Au/Uncalcined TS-1 Catalysts for Propylene Epoxidation with H ₂ and O ₂ . Industrial & Engineering Chemistry Research, 2019, 58, 17300-17307.	1.8	29
125	Insights into Hydrogen Transport Behavior on Perovskite Surfaces: Transition from the Grotthuss Mechanism to the Vehicle Mechanism. Langmuir, 2019, 35, 9962-9969.	1.6	29
126	Propene epoxidation with H2 and O2 on Au/TS-1 catalyst: Cost-effective synthesis of small-sized mesoporous TS-1 and its unique performance. Catalysis Today, 2020, 347, 102-109.	2.2	29

#	Article	IF	CITATIONS
127	Tailoring catalytic properties of V2O3 to propane dehydrogenation through single-atom doping: A DFT study. Catalysis Today, 2021, 368, 46-57.	2.2	29
128	Kinetics study of C 2+ oxygenates synthesis from syngas over Rh–MnO x /SiO 2 catalysts. Chemical Engineering Science, 2015, 135, 312-322.	1.9	28
129	Support effect on the bimetallic structure of Ir–Re catalysts and their performances in glycerol hydrogenolysis. Journal of Molecular Catalysis A, 2015, 410, 81-88.	4.8	28
130	Hierarchical MgAl2O4 supported Pt-Sn as a highly thermostable catalyst for propane dehydrogenation. Catalysis Communications, 2016, 84, 85-88.	1.6	28
131	Synergy of carbocatalytic and heat activation of persulfate for evolution of reactive radicals toward metal-free oxidation. Catalysis Today, 2020, 355, 319-324.	2.2	28
132	Tailoring electronic properties and kinetics behaviors of Pd/Nâ€CNTs catalysts for selective hydrogenation of acetylene. AICHE Journal, 2020, 66, e16857.	1.8	28
133	Zeolite crystal size effects of Au/uncalcined TS-1 bifunctional catalysts on direct propylene epoxidation with H2 and O2. Chemical Engineering Science, 2020, 227, 115907.	1.9	28
134	Carbon Nanofiber-Supported Pd Catalysts for Heck Reaction: Effects of Support Interaction. Chinese Journal of Catalysis, 2008, 29, 1145-1151.	6.9	27
135	Ultrasonic synthesis of nitrogen-doped carbon nanofibers as platinum catalyst support for oxygen reduction. Journal of Power Sources, 2011, 196, 9356-9360.	4.0	27
136	Fabricating ZSM-23 with reduced aspect ratio through ball-milling and recrystallization: Synthesis, structure and catalytic performance in N-heptane hydroisomerization. Catalysis Today, 2019, 329, 82-93.	2.2	27
137	Dualâ€function catalysis in propane dehydrogenation over <scp>Pt₁–Ga₂O₃</scp> catalyst: Insights from a microkinetic analysis. AICHE Journal, 2020, 66, e16232.	1.8	27
138	Support effects of Cs/Al2O3 catalyzed aldol condensation of methyl acetate with formaldehyde. Catalysis Today, 2021, 365, 310-317.	2.2	27
139	Peroxidization of methyl ethyl ketone in a microchannel reactor. Chemical Engineering Science, 2007, 62, 5127-5132.	1.9	26
140	A unique method to fabricate NixMg1â vXO (111) nano-platelet solid solution catalyst for CH4-CO2 dry reforming. Catalysis Communications, 2013, 34, 11-15.	1.6	26
141	A solvent evaporation route towards fabrication of hierarchically porous ZSM-11 with highly accessible mesopores. RSC Advances, 2015, 5, 31195-31204.	1.7	26
142	Insights into Activated Carbon-Supported Platinum Catalysts for Base-Free Oxidation of Glycerol. Industrial & Engineering Chemistry Research, 2016, 55, 420-427.	1.8	26
143	Polyoxometalates-engineered hydrogen generation rate and durability of Pt/CNT catalysts from ammonia borane. Journal of Energy Chemistry, 2020, 41, 142-148.	7.1	26
144	Optimizing catalyst pore network structure in the presence of deactivation by coking. AICHE Journal, 2019, 65, e16687.	1.8	25

#	Article	IF	CITATIONS
145	Electronic Origin of Oxygen Transport Behavior in La-Based Perovskites: A Density Functional Theory Study. Journal of Physical Chemistry C, 2019, 123, 275-290.	1.5	25
146	Heat integrated technology assisted pressure-swing distillation for the mixture of ethylene glycol and 1,2-butanediol. Separation and Purification Technology, 2020, 241, 116740.	3.9	25
147	Optimization of the fixed-bed reactor for ethylene epoxidation. Chemical Engineering and Processing: Process Intensification, 2005, 44, 1098-1107.	1.8	24
148	Synthesis and characterization of titanium silicate-1 supported on carbon nanofiber. Microporous and Mesoporous Materials, 2008, 108, 311-317.	2.2	24
149	Kinetics-assisted discrimination of active sites in Ru catalyzed hydrolytic dehydrogenation of ammonia borane. Reaction Chemistry and Engineering, 2019, 4, 316-322.	1.9	24
150	Understanding the Role of Internal Diffusion Barriers in Pt/Beta Zeolite Catalyzed Isomerization of <i>n</i> â€Heptane. Angewandte Chemie, 2020, 132, 1564-1567.	1.6	24
151	Bi-reforming of methane with steam and CO ₂ under pressurized conditions on a durable Ir–Ni/MgAl ₂ O ₄ catalyst. Chemical Communications, 2020, 56, 13536-13539.	2.2	24
152	Carbon nanofibers supported Ru catalyst for sorbitol hydrogenolysis to glycols: Effect of calcination. Korean Journal of Chemical Engineering, 2010, 27, 1412-1418.	1.2	23
153	Fe particles on the tops of carbon nanofibers immobilized on structured carbon microfibers for ammonia decomposition. Catalysis Today, 2013, 216, 254-260.	2.2	23
154	Probing the Nature of Surface Barriers on ZSMâ€5 by Surface Modification. Chemie-Ingenieur-Technik, 2017, 89, 1333-1342.	0.4	23
155	Influence of tubular reactor structure and operating conditions on dry reforming of methane. Chemical Engineering Research and Design, 2018, 139, 39-51.	2.7	23
156	SbO _x â€promoted pt nanoparticles supported on CNTs as catalysts for baseâ€free oxidation of glycerol to dihydroxyacetone. AICHE Journal, 2018, 64, 3979-3987.	1.8	23
157	Propylene epoxidation in a microreactor with electric heating. Catalysis Today, 2005, 105, 544-550.	2.2	22
158	Effect of Impurity on the Lateral Crystal Growth of <scp>I</scp> -Alanine: A Combined Simulation and Experimental Study. Industrial & Engineering Chemistry Research, 2012, 51, 14845-14849.	1.8	22
159	Probing pore blocking effects on multiphase reactions within porous catalyst particles using a discrete model. AICHE Journal, 2016, 62, 451-460.	1.8	22
160	Method for generating pore networks in porous particles of arbitrary shape, and its application to catalytic hydrogenation of benzene. Chemical Engineering Journal, 2017, 329, 56-65.	6.6	22
161	Enhanced performance of catalyst pellets for methane dry reforming by engineering pore network structure. Chemical Engineering Journal, 2019, 373, 1389-1396.	6.6	22
162	Active sites of Pt/CNTs nanocatalysts for aerobic base-free oxidation of glycerol. Green Energy and Environment, 2020, 5, 76-82.	4.7	22

#	Article	IF	CITATIONS
163	Dimensionality-dependent performance of nanostructured bismuth sulfide in photodegradation of organic dyes. Materials Chemistry and Physics, 2013, 138, 755-761.	2.0	21
164	Tailoring the Structure of Hierarchically Porous Zeolite Beta through Modified Orientated Attachment Growth in a Dry Gel System. Chemistry - A European Journal, 2014, 20, 14744-14755.	1.7	21
165	Hydrogenolysis of sorbitol to glycols over carbon nanofibers-supported ruthenium catalyst: The role of base promoter. Chinese Journal of Catalysis, 2014, 35, 692-702.	6.9	21
166	Effects of carbon support on microwave-assisted catalytic dehydrogenation of decalin. Carbon, 2014, 67, 775-783.	5.4	21
167	Insights into the effects of steam on propane dehydrogenation over a Pt/Al ₂ O ₃ catalyst. Catalysis Science and Technology, 2015, 5, 3991-4000.	2.1	21
168	Recent advances in synthesis of reshaped Fe and Ni particles at the tips of carbon nanofibers and their catalytic applications. Catalysis Today, 2015, 249, 2-11.	2.2	21
169	Ni(OH)2 nanowires/graphite foam composite as an advanced supercapacitor electrode with improved cycle performance. International Journal of Hydrogen Energy, 2016, 41, 12136-12145.	3.8	21
170	The tailored synthesis of nanosized SAPO-34 via time-controlled silicon release enabled by an organosilane precursor. Chemical Communications, 2017, 53, 6132-6135.	2.2	21
171	Tailoring of Fe/MnK-CNTs Composite Catalysts for the Fischer–Tropsch Synthesis of Lower Olefins from Syngas. Industrial & Engineering Chemistry Research, 2018, 57, 11554-11560.	1.8	21
172	The role of H ₂ S addition on Pt/Al ₂ O ₃ catalyzed propane dehydrogenation: a mechanistic study. Catalysis Science and Technology, 2019, 9, 867-876.	2.1	21
173	Mechanism-guided elaboration of ternary Au–Ti–Si sites to boost propylene oxide formation. Chem Catalysis, 2021, 1, 885-895.	2.9	21
174	Preparation of CNF-supported Pt catalysts for hydrogen evolution from decalin. Materials Chemistry and Physics, 2011, 126, 41-45.	2.0	20
175	Gas–liquid mixing in a multi-scale micromixer with arborescence structure. Chemical Engineering Journal, 2011, 167, 475-482.	6.6	20
176	Effects of pretreatment temperature on bimetallic Ir-Re catalysts for glycerol hydrogenolysis. Chinese Journal of Catalysis, 2015, 36, 1750-1758.	6.9	20
177	Morphology and location manipulation of Fe nanoparticles on carbon nanofibers as catalysts for ammonia decomposition to generate hydrogen. International Journal of Hydrogen Energy, 2017, 42, 17466-17475.	3.8	20
178	Active sites and reaction mechanism for N-doped carbocatalysis of phenol removal. Green Energy and Environment, 2020, 5, 444-452.	4.7	20
179	Platelet carbon nanofibers as support of Pt-CoO electrocatalyst for superior hydrogen evolution. Journal of Energy Chemistry, 2021, 52, 33-40.	7.1	20
180	Understanding size-dependent hydrogenation of dimethyl oxalate to methyl glycolate over Ag catalysts. Journal of Catalysis, 2021, 401, 252-261.	3.1	20

#	Article	IF	CITATIONS
181	Oxygen reduction reaction properties of carbon nanofibers: Effect of metal purification. Electrochimica Acta, 2008, 53, 3587-3596.	2.6	19
182	Continuous synthesis of methyl ethyl ketone peroxide in a microreaction system with concentrated hydrogen peroxide. Journal of Hazardous Materials, 2010, 181, 1024-1030.	6.5	19
183	Evolution of Carbon Nanofiber-Supported Pt Nanoparticles of Different Particle Sizes: A Molecular Dynamics Study. Journal of Physical Chemistry C, 2014, 118, 23711-23722.	1.5	19
184	Synthesis of platinum/graphene composites by a polyol method: The role of graphite oxide precursor surface chemistry. Carbon, 2015, 89, 93-101.	5.4	19
185	A mechanistic basis for the effects of Mn loading on C2+ oxygenates synthesis directly from syngas over Rh–MnO /SiO2 catalysts. Chemical Engineering Science, 2015, 135, 301-311.	1.9	19
186	New class of two-dimensional bimetallic nanoplatelets for high energy density and electrochemically stable hybrid supercapacitors. Nano Research, 2017, 10, 3018-3034.	5.8	19
187	Synthesis of Nanosized SAPO-34 via an Azeotrope Evaporation and Dry Gel Conversion Route and Its Catalytic Performance in Chloromethane Conversion. Industrial & Engineering Chemistry Research, 2018, 57, 548-558.	1.8	19
188	Toward rational catalyst design for partial hydrogenation of dimethyl oxalate to methyl glycolate: a descriptor-based microkinetic analysis. Catalysis Science and Technology, 2019, 9, 5763-5773.	2.1	19
189	Atomic Insights into Robust Pt–PdO Interfacial Site-Boosted Hydrogen Generation. ACS Catalysis, 2020, 10, 11417-11429.	5.5	19
190	Enhanced Distribution and Anchorage of Carbon Nanofibers Grown on Structured Carbon Microfibers. Journal of Physical Chemistry C, 2009, 113, 1301-1307.	1.5	18
191	Grafting of Poly(n-butylacrylate)-b-poly(2-hydroxyethyl methacrylate) on Carbon Fiber and its Effect on Composite Properties. Polymer-Plastics Technology and Engineering, 2011, 50, 260-265.	1.9	18
192	Dependence of wall stress ratio on wall friction coefficient during the discharging of a 3D rectangular hopper. Powder Technology, 2015, 284, 326-335.	2.1	18
193	Mechanistic Understanding of Sizeâ€Ðependent Oxygen Reduction Activity and Selectivity over Pt/CNT Nanocatalysts. European Journal of Inorganic Chemistry, 2019, 2019, 3210-3217.	1.0	18
194	Catalyst consisting of Ag nanoparticles anchored on amine-derivatized mesoporous silica nanospheres for the selective hydrogenation of dimethyl oxalate to methyl glycolate. Journal of Catalysis, 2020, 391, 155-162.	3.1	18
195	Rational screening of single-atom-doped ZnO catalysts for propane dehydrogenation from microkinetic analysis. Catalysis Science and Technology, 2020, 10, 4938-4951.	2.1	18
196	Aluminous ZSM-48 Zeolite Synthesis Using a Hydroisomerization Intermediate Mimicking Allyltrimethylammonium Chloride as a Structure-Directing Agent. Industrial & Engineering Chemistry Research, 2020, 59, 11139-11148.	1.8	18
197	Molecular-level insights into the electronic effects in platinum-catalyzed carbon monoxide oxidation. Nature Communications, 2021, 12, 6888.	5.8	18
198	Structural manipulation of the catalysts for ammonia decomposition. Catalysis, 2013, , 118-140.	0.6	17

#	Article	IF	CITATIONS
199	Kinetics of Catalytic Dehydrogenation of Propane over Pt-Based Catalysts. Advances in Chemical Engineering, 2014, 44, 61-125.	0.5	17
200	Carbon nanotubes as transient inhibitors in steam-assisted crystallization of hierarchical ZSM-5 zeolites. Materials Letters, 2015, 159, 466-469.	1.3	17
201	Hierarchical NiCo LDH–rGO/Ni Foam Composite as Electrode Material for High-Performance Supercapacitors. Transactions of Tianjin University, 2019, 25, 266-275.	3.3	17
202	On the nature of Pt-carbon interactions for enhanced hydrogen generation. Journal of Catalysis, 2020, 389, 492-501.	3.1	17
203	Methyl Methacrylate Synthesis: Thermodynamic Analysis for Oxidative Esterification of Methacrolein and Aldol Condensation of Methyl Acetate. Industrial & Engineering Chemistry Research, 2020, 59, 17408-17416.	1.8	17
204	Enhanced acetylene semi-hydrogenation on a subsurface carbon tailored Ni–Ga intermetallic catalyst. Journal of Materials Chemistry A, 2022, 10, 19722-19731.	5.2	17
205	Crystallization of zinc lactate in presence of malic acid. Journal of Crystal Growth, 2010, 312, 2747-2755.	0.7	16
206	A Novel Indiumâ€Boron Amorphous Alloy Mediator for Barbierâ€Type Carbonyl Allylation in Aqueous Medium. Advanced Synthesis and Catalysis, 2011, 353, 2131-2136.	2.1	16
207	Role of CO2 in ethylbenzene dehydrogenation over Fe2O3(0 0 0 1) from first principles. Journal of Molecular Catalysis A, 2011, 344, 53-61.	4.8	16
208	The templating effect of an easily available cationic polymer with widely separated charge centers on the synthesis of a hierarchical ZSM-5 zeolite. Journal of Materials Chemistry A, 2014, 2, 18666-18676.	5.2	16
209	Morphology dependence of catalytic properties of Ni nanoparticles at the tips of carbon nanofibers for ammonia decomposition to generate hydrogen. International Journal of Hydrogen Energy, 2014, 39, 20722-20730.	3.8	16
210	Understanding supersaturationâ€dependent crystal growth of Lâ€alanine in aqueous solution. Crystal Research and Technology, 2016, 51, 23-29.	0.6	16
211	Novel Fe/MnK NTs nanocomposites as catalysts for direct production of lower olefins from syngas. AICHE Journal, 2017, 63, 154-161.	1.8	16
212	Effect of electrode fabrication methods on the electrode performance for ethanol oxidation. Journal of Power Sources, 2011, 196, 159-163.	4.0	15
213	Nickel nanoparticles embedded in the framework of mesoporous TiO2: Efficient and highly stable catalysts for hydrodechlorination of chlorobenzene. Applied Catalysis A: General, 2012, 413-414, 350-357.	2.2	15
214	Solid–liquid equilibrium of dicyandiamide in different solvents. Fluid Phase Equilibria, 2014, 363, 228-232.	1.4	15
215	Selective Oxidation of Hydrogen in the Presence of Propylene over Pt-Based Core–Shell Nanocatalysts. Journal of Physical Chemistry C, 2015, 119, 21386-21394.	1.5	15
216	Influence of catalyst pore network structure on the hysteresis of multiphase reactions. AICHE Journal, 2017, 63, 78-86.	1.8	15

#	Article	IF	CITATIONS
217	Site-Dependent Activity and Selectivity of H ₂ O ₂ Formation from H ₂ and O ₂ over Au-Based Catalysts. Industrial & Engineering Chemistry Research, 2019, 58, 15119-15126.	1.8	15
218	Engineering the Hierarchical Pore Structures and Geometries of Hydrodemetallization Catalyst Pellets. Industrial & Engineering Chemistry Research, 2019, 58, 9829-9837.	1.8	15
219	Pore engineering of hierarchically structured hydrodemetallization catalyst pellets in a fixed bed reactor. Chemical Engineering Science, 2019, 202, 336-346.	1.9	15
220	Crucial size effects of atomic-layer-deposited Pt catalysts on methanol electrooxidation. Catalysis Today, 2021, 364, 157-163.	2.2	15
221	Rational design of intermetallic compound catalysts for propane dehydrogenation from a descriptor-based microkinetic analysis. Journal of Catalysis, 2021, 404, 32-45.	3.1	15
222	First-Principles Study of C Adsorption and Diffusion on the Surfaces and in the Subsurfaces of Nonreconstructed and Reconstructed Ni(100). Journal of Physical Chemistry C, 2007, 111, 3447-3453.	1.5	14
223	Evaluation of the performance of a constructal mixer with the iodide–iodate reaction system. Chemical Engineering and Processing: Process Intensification, 2010, 49, 628-632.	1.8	14
224	Solubility and polymorphic forms of antibiotic lasalocid sodium in different organic solvents. Fluid Phase Equilibria, 2014, 374, 20-24.	1.4	14
225	Pickering emulsion mediated crystallization of hierarchical zeolite SSZ-13 with enhanced NH3 selective catalytic reduction performance. Microporous and Mesoporous Materials, 2019, 285, 202-214.	2.2	14
226	Synthesis of carbon nanofibers/mica hybrids for antistatic coatings. Materials Letters, 2010, 64, 711-714.	1.3	13
227	Flat interface mediated synthesis of platelet carbon nanofibers on Fe nanoparticles. Catalysis Today, 2012, 186, 48-53.	2.2	13
228	Insights into Polymorphic Transformation of <scp>l</scp> -Glutamic Acid: A Combined Experimental and Simulation Study. Crystal Growth and Design, 2015, 15, 3602-3608.	1.4	13
229	Effects of Oxygen Vacancy and Pt Doping on the Catalytic Performance of <scp>CeO₂</scp> in Propane Dehydrogenation: A <scp>Firstâ€Principles</scp> Study. Chinese Journal of Chemistry, 2021, 39, 2391-2402.	2.6	13
230	Numerical Investigation of Constructal Distributors with Different Configurations. Chinese Journal of Chemical Engineering, 2009, 17, 175-178.	1.7	12
231	Effects of Different Organic Acids on Solubility and Metastable Zone Width of Zinc Lactate. Journal of Chemical & Engineering Data, 2012, 57, 2963-2970.	1.0	12
232	Deactivation and regeneration of Claus catalyst particles unraveled by pore network model. Chemical Engineering Science, 2020, 211, 115305.	1.9	12
233	Promotional Effect of Carbon on Fe Catalysts for Ammonia Decomposition: A Density Functional Theory Study. Industrial & amp; Engineering Chemistry Research, 2013, 52, 17151-17155.	1.8	11
234	Supersaturation-dependent polymorphic outcome and transformation rate of <scp> </scp> -glutamic acid. RSC Advances, 2016, 6, 74700-74703.	1.7	11

#	Article	IF	CITATIONS
235	The urea-barbituric acid polymorphic co-crystal system: Characterization, thermodynamics and crystallization. Journal of Crystal Growth, 2018, 502, 45-53.	0.7	11
236	Origin of Chemisorption Energy Scaling Relations over Perovskite Surfaces. Journal of Physical Chemistry C, 2019, 123, 28275-28283.	1.5	11
237	BEEF-vdW+ <i>U</i> method applied to perovskites: thermodynamic, structural, electronic, and magnetic properties. Journal of Physics Condensed Matter, 2019, 31, 145901.	0.7	11
238	Promotional effect of Ce and Fe addition on Cu-based extruded catalyst for catalytic elimination of co-fed acrylonitrile and HCN. Catalysis Communications, 2019, 123, 27-31.	1.6	11
239	Identification of Synergistic Actions between Cu ⁰ and Cu ⁺ Sites in Hydrogenation of Dimethyl Oxalate from Microkinetic Analysis. Industrial & Engineering Chemistry Research, 2020, 59, 22451-22459.	1.8	11
240	Optimizing catalyst supports at single catalyst pellet and packed bed reactor levels: A comparison study. AICHE Journal, 2021, 67, e17163.	1.8	11
241	Simulation and optimization of a coupled reactor/column system for trioxane synthesis. Chemical Engineering Science, 1999, 54, 1353-1358.	1.9	10
242	Increasing the Molecular Weight of Poly(L-Lactic Acid) by Solid State Polycondensation in a Closed System. Journal of Polymer Engineering, 2003, 23, .	0.6	10
243	Modeling and Simulation of Coke Combustion Regeneration for Coked Cr2O3/Al2O3 Propane Dehydrogenation Catalyst. Chinese Journal of Chemical Engineering, 2010, 18, 618-625.	1.7	10
244	Evolution of Pt Nanoparticles Supported on Fishbone-Type Carbon Nanofibers with Cone–Helix Structures: A Molecular Dynamics Study. Journal of Physical Chemistry C, 2013, 117, 14261-14271.	1.5	10
245	Effects of Solvent and Impurities on Crystal Morphology of Zinc Lactate Trihydrate. Chinese Journal of Chemical Engineering, 2014, 22, 221-226.	1.7	10
246	Insights into the growth of small-sized SAPO-34 crystals synthesized by a vapor-phase transport method. CrystEngComm, 2015, 17, 3214-3218.	1.3	10
247	Biochemical composite synthesized by stepwise crosslinking: An efficient platform for one-pot biomass conversion. Journal of Catalysis, 2015, 327, 78-85.	3.1	10
248	Design, modeling, and optimization of a lightweight MeOH-to-H2 processor. International Journal of Hydrogen Energy, 2018, 43, 14451-14465.	3.8	10
249	A phase-transfer crystallization pathway to synthesize ultrasmall silicoaluminophosphate for enhanced catalytic conversion of dimethylether-to-olefin. CrystEngComm, 2019, 21, 577-582.	1.3	10
250	In-Situ Catalytic Upgrading of Tar and Coke during Biomass/Coal Co-pyrolysis. Industrial & Engineering Chemistry Research, 2020, 59, 17182-17191.	1.8	10
251	Solubility and thermodynamics of d-glucosamine 2-sulfate sodium salt in water and binary solvent mixtures with methanol, ethanol and n-propanol. Journal of Molecular Liquids, 2020, 300, 112218.	2.3	10
252	Design and tailoring of advanced catalytic process for light alkanes upgrading. EcoMat, 2021, 3, e12095.	6.8	10

#	Article	IF	CITATIONS
253	Liquid Flow and Mass Transfer Behaviors in a Butterfly-Shaped Microreactor. Micromachines, 2021, 12, 883.	1.4	10
254	Kinetically controlled synthesis of carbon nanofibers with different morphologies by catalytic CO disproportionation over iron catalyst. Chemical Engineering Science, 2010, 65, 193-200.	1.9	9
255	Effect of polymorphism on the purity of l-glutamic acid. Journal of Crystal Growth, 2013, 373, 78-81.	0.7	9
256	Design and optimization of an ammonia fuel processing unit for a stand-alone PEM fuel cell power generation system. International Journal of Energy Research, 2017, 41, 877-888.	2.2	9
257	CO Adsorption and Activation of ÎFe ₂ C Fischer–Tropsch Catalyst. Industrial & Engineering Chemistry Research, 2019, 58, 21296-21303.	1.8	9
258	Process Monitoring via Key Principal Components and Local Information Based Weights. IEEE Access, 2019, 7, 15357-15366.	2.6	9
259	Role of Câ€Defective Sites in CO Adsorption over ϵâ€Fe 2 C and Î â€Fe 2 C Fischerâ€Tropsch Catalysts. Chemistr an Asian Journal, 2020, 15, 4014-4022.	^y ī.7	9
260	Direct and Efficient Synthesis of Clean H ₂ O ₂ from CO-Assisted Aqueous O ₂ Reduction. ACS Catalysis, 2020, 10, 13993-14005.	5.5	9
261	Coupling non-isothermal trickle-bed reactor with catalyst pellet models to understand the reaction and diffusion in gas oil hydrodesulfurization. Chinese Journal of Chemical Engineering, 2020, 28, 1095-1106.	1.7	9
262	A Supervised Adaptive Resampling Monitoring Method for Quality Indicator in Time-Varying Process. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-10.	2.4	9
263	Systematic thermodynamic study of clorsulon dissolved in ten organic solvents: Mechanism evaluation by modeling and molecular dynamic simulation. Journal of Molecular Liquids, 2021, 341, 117217.	2.3	9
264	Pt-O4 moiety induced electron localization toward In2O-Triggered acetylene Semi-Hydrogenation. Journal of Catalysis, 2022, 407, 290-299.	3.1	9
265	Probing the structure sensitivity of dimethyl oxalate partial hydrogenation over Ag nanoparticles: A combined experimental and microkinetic study. Chemical Engineering Science, 2022, 259, 117830.	1.9	9
266	First-principles calculations of C diffusion through the surface and subsurface of Ag/Ni(100) and reconstructed Ag/Ni(100). Surface Science, 2010, 604, 186-195.	0.8	8
267	Support effects on catalytic performance for selective combustion of hydrogen in the presence of propene. Fuel Processing Technology, 2013, 108, 82-88.	3.7	8
268	Adsorption of a single Pt atom on polyaromatic hydrocarbons from first-principle calculations. Chemical Physics Letters, 2013, 575, 76-80.	1.2	8
269	Correlation of solubility and calculation of thermodynamic properties of guanidine nitrate in different solvents. Fluid Phase Equilibria, 2015, 388, 59-65.	1.4	8
270	Thermodynamic analysis of the solubility of polymorphic cytarabine in a variety of pure solvents. Fluid Phase Equilibria, 2017, 445, 1-6.	1.4	8

#	Article	IF	CITATIONS
271	Process simulation and optimization of propane dehydrogenation combined with selective hydrogen combustion. Chemical Engineering and Processing: Process Intensification, 2019, 143, 107608.	1.8	8
272	Size-Dependent Segregation Preference in Single-Atom Alloys of Late Transition Metals: Effects of Magnetism, Electron Correlation, and Geometrical Strain. Journal of Physical Chemistry C, 2019, 123, 18417-18424.	1.5	8
273	Crystal engineering of hierarchical zeolite in dynamically maintained Pickering emulsion. Chemical Engineering Research and Design, 2020, 153, 49-62.	2.7	8
274	Mechanistic aspects of facet-dependent CH4/C2+ selectivity over a χ-Fe5C2 Fischer–Tropsch catalyst. Green Energy and Environment, 2022, 7, 449-456.	4.7	8
275	A pore network model for calculating pressure drop in packed beds of arbitraryâ€shaped particles. AICHE Journal, 2020, 66, e16258.	1.8	8
276	Effect of External Surface Diffusion Barriers on Platinum/Beta atalyzed Isomerization of n â€Pentane. Angewandte Chemie, 2021, 133, 14515-14519.	1.6	8
277	Novel pharmaceutical cocrystal of lenalidomide with nicotinamide: Structural design, evaluation, and thermal phase transition study. International Journal of Pharmaceutics, 2022, 613, 121394.	2.6	8
278	Pressure Drop of Structured Packing of Carbon Nanofiber Composite. Industrial & Engineering Chemistry Research, 2010, 49, 3944-3951.	1.8	7
279	Hierarchically porous zeolite beta synthesized via steam-assisted crystallization of silanized dry gel. Materials Letters, 2014, 131, 214-216.	1.3	7
280	A hierarchical bulky ZSM-5 zeolite synthesized via glycerol-mediated crystallization using a mesoporous steam-treated dry gel as the precursor. New Journal of Chemistry, 2015, 39, 7777-7780.	1.4	7
281	Manipulating the architecture of zeolite catalysts for enhanced mass transfer. Current Opinion in Chemical Engineering, 2015, 9, 42-48.	3.8	7
282	Microporous inert membrane packed-bed reactor for propylene epoxidation with hydrogen and oxygen: Modelling and simulation. Chemical Engineering and Processing: Process Intensification, 2017, 122, 425-433.	1.8	7
283	An analytical method for the optimization of pore network in lithium-ion battery electrodes. Chemical Engineering Research and Design, 2019, 149, 226-234.	2.7	7
284	Surface phase diagrams of La-based perovskites towards the O-rich limit from first principles. Physical Chemistry Chemical Physics, 2019, 21, 12859-12871.	1.3	7
285	Shape selectivity in acidic zeolite catalyzed 2-pentene skeletal isomerization from first principles. Catalysis Today, 2020, 347, 115-123.	2.2	7
286	Polymer decoration of carbon support to boost Pt-catalyzed hydrogen generation activity and durability. Journal of Catalysis, 2020, 385, 289-299.	3.1	7
287	Optimal design of hierarchically structured <scp>ZSM</scp> â€5 zeolites for <scp><i>n</i>â€hexane</scp> isomerization. AICHE Journal, 2021, 67, e17355.	1.8	7
288	Kinetics and mechanistic insights into the hydrothermal synthesis of alumina microrods. Chemical Engineering Science, 2021, 244, 116817.	1.9	7

#	Article	IF	CITATIONS
289	Highâ€yield production of <i>p</i> â€diethynylbenzene through consecutive bromination/dehydrobromination in a microreactor system. AICHE Journal, 2022, 68, e17498.	1.8	7
290	A predictive neural network model based on the karhunenâ€loéave expansion for wallâ€cooled fixedâ€bed reactors. Canadian Journal of Chemical Engineering, 1996, 74, 638-646.	0.9	6
291	Optimizing control of a wall-cooled fixed-bed reactor. Chemical Engineering Science, 1999, 54, 2739-2744.	1.9	6
292	Palladium Catalysts Supported on Fishbone Carbon Nanofibers from Different Carbon Sources. Chinese Journal of Catalysis, 2008, 29, 1107-1112.	6.9	6
293	Synthesis and characterization of carbon nanofiber/alumina composite by extrusion casting. Carbon, 2009, 47, 2077-2084.	5.4	6
294	Hydrogenation of acetylenic contaminants over Ni-Based catalyst: Enhanced performance by addition of silver. Journal of Cleaner Production, 2019, 220, 289-297.	4.6	6
295	Unprecedented yield of methyl-esterification with in-situ generated diazomethane in a microchannel reactor with methanol as solvent. Chemical Engineering Science, 2020, 213, 115397.	1.9	6
296	Engineering Ru atomic structures toward enhanced kinetics of hydrogen generation. Chemical Engineering Science, 2021, 235, 116507.	1.9	6
297	Hierarchical pore construction of alumina microrod supports for Pt catalysts toward the enhanced performance of n-heptane reforming. Chemical Engineering Science, 2022, 252, 117286.	1.9	6
298	Numerical Reconstruction of the Catalyst Bed Temperature Distribution in a Multitubular Fixed-Bed Reactor by Karhunen–LoÔve Expansion. Industrial & Engineering Chemistry Research, 2013, 52, 7818-7826.	1.8	5
299	Effect of Zn on the selectivity of Ru in benzene partial hydrogenation from density functional theory investigations. Journal of Molecular Catalysis A, 2013, 370, 44-49.	4.8	5
300	How PM2.5 Affects Pt-Catalyzed Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 9385-9392.	3.2	5
301	Crucial roles of support modification and promoter introduction in Fe/CNT catalyzed syngas conversion to lower olefins. Catalysis Today, 2021, 368, 126-132.	2.2	5
302	Kinetics decoupling activity and selectivity of Pt nanocatalyst for enhanced glycerol oxidation performance. AICHE Journal, 2021, 67, e17339.	1.8	5
303	Jet Fuel Range Hydrocarbon Production from Propanal: Mechanistic Insights into Active Site Requirement of a Dual-Bed Catalyst. ACS Sustainable Chemistry and Engineering, 2020, 8, 9434-9446.	3.2	5
304	Tuning partially charged Pt ^{<i>δ</i>+} of atomically dispersed Pt catalysts toward superior propane dehydrogenation performance. Catalysis Science and Technology, 2021, 11, 7840-7843.	2.1	5
305	Thermodynamics of Carbon Monoxide Adsorption on Cu/SBA-15 Catalysts: Under Vacuum versus under Atmospheric Pressures. Journal of Physical Chemistry C, 2022, 126, 3078-3086.	1.5	5
306	Catalyst particle shapes and pore structure engineering for hydrodesulfurization and hydrodenitrogenation reactions. Frontiers of Chemical Science and Engineering, 2022, 16, 897-908.	2.3	5

XING-GUI ZHOU

#	Article	IF	CITATIONS
307	Size Dependence of Pd-Catalyzed Hydrogenation of 2,6-Diamino-3,5-dinitropyridine. Industrial & Engineering Chemistry Research, 2022, 61, 6427-6435.	1.8	5
308	Studies on paired packed-bed electrode reactor: Modeling and experiments. Chemical Engineering Science, 1999, 54, 2969-2977.	1.9	4
309	Grafting of polystyrene on carbon nanofibers by introducing a methacrylate unit. Polymer International, 2009, 58, 564-569.	1.6	4
310	Bis(perfluoro-2-n-propoxyethyl)diacyl peroxide initiated homopolymerization of vinylidene fluoride (VDF) and copolymerization with perfluoro-n-propylvinylether (PPVE). Polymer, 2014, 55, 3557-3563.	1.8	4
311	Dynamic control of a selective hydrogenation process with undesired MAPD impurities in the C3-cut streams. Journal of the Taiwan Institute of Chemical Engineers, 2015, 54, 28-36.	2.7	4
312	Effects of methylating agent and BrÃ,nsted acidity on methylation activity of olefins in CHA-structured zeolites: A periodic DFT study. Molecular Catalysis, 2018, 446, 106-114.	1.0	4
313	Decoding Atomic-Level Structures of the Interface between Pt Sub-nanocrystals and Nanostructured Carbon. Journal of Physical Chemistry C, 2018, 122, 7166-7178.	1.5	4
314	Boosting Sizeâ€Selective Hydrogen Combustion in the Presence of Propene Using Controllable Metal Clusters Encapsulated in Zeolite. Angewandte Chemie, 2018, 130, 9918-9922.	1.6	4
315	Understanding of two-stage continuous microreaction technology for in-situ generation and consecutive conversion of diazomethane. Journal of the Taiwan Institute of Chemical Engineers, 2019, 98, 94-98.	2.7	4
316	Explosion limits estimation and process optimization of direct propylene epoxidation with H2 and O2. Chinese Journal of Chemical Engineering, 2019, 27, 2968-2978.	1.7	4
317	Elucidating the methanol conversion in H-SAPO-5 from first principles: Nature of hydrocarbon pool and scission style. Molecular Catalysis, 2020, 490, 110948.	1.0	4
318	Optimization of catalyst pellet structures and operation conditions for CO methanation. Chinese Journal of Chemical Engineering, 2021, 40, 106-113.	1.7	4
319	Combining trace Pt with surface silylation to boost Au/uncalcined <scp>TS</scp> â€1 catalyzed propylene epoxidation with <scp>H₂</scp> and <scp>O₂</scp> . AICHE Journal, 2022, 68, e17416.	1.8	4
320	Enhanced catalytic performance of transition metal-doped Cr2O3 catalysts for propane dehydrogenation: A microkinetic modeling study. Chemical Engineering Journal, 2022, 446, 136913.	6.6	4
321	Structureâ€sensitivity of CH ₃ dissociation on Ni(100)from firstâ€principles calculations. Asia-Pacific Journal of Chemical Engineering, 2009, 4, 511-517.	0.8	3
322	Pressure Drop and Residence Time Distribution in Carbon-Nanofiber/Graphite-Felt Composite for Single Liquid-Phase Flow. Industrial & Engineering Chemistry Research, 2011, 50, 9431-9436.	1.8	3
323	Evaluation of approximations for concentration-dependent micropore diffusion in sorbent with bidisperse pore structure. Adsorption, 2014, 20, 843-853.	1.4	3
324	Kinetic modeling on batch-cooling crystallization of zinc lactate: The influence of malic acid. Journal of Crystal Growth, 2017, 463, 162-167.	0.7	3

XING-GUI ZHOU

#	Article	IF	CITATIONS
325	Cobalt-based layered metal compound nanoplatelets for lithium-ion batteries. Materials Letters, 2017, 194, 189-192.	1.3	3
326	Determination of Ternary Vapor–Liquid Equilibrium of Dimethyl Oxalate–Methanol-1,2-Butanediol under Atmosphere Pressure. Journal of Chemical & Engineering Data, 2019, 64, 1349-1356.	1.0	3
327	Modeling of propane dehydrogenation combined with chemical looping combustion of hydrogen in a fixed bed reactor. Chinese Journal of Chemical Engineering, 2022, 47, 165-173.	1.7	3
328	Thermodynamics Insights into the Selective Hydrogenation of Alkynes in C ₂ and C ₃ Streams. Industrial & Engineering Chemistry Research, 2021, 60, 16969-16980.	1.8	3
329	Rational design of heterogeneous catalysts by breaking and rebuilding scaling relations. Chinese Journal of Chemical Engineering, 2022, 41, 22-28.	1.7	3
330	Crystalâ€size–dependent external surface diffusion barriers in Pt/ <scp>ZSM</scp> â€5 catalyzed <i>n</i> â€pentane isomerization. AICHE Journal, 2022, 68, .	1.8	3
331	A Mechanistic Study of Oxygen Replenishment of Reduced Perovskites in Chemical Looping Redox Reactions. Journal of Physical Chemistry C, 2022, 126, 7431-7445.	1.5	3
332	Control Vector Parametrization with Karhunenâ^'Loéve Expansion. Industrial & Engineering Chemistry Research, 2004, 43, 127-135.	1.8	2
333	Catalytic Vapor Decomposition of Methane over Nickle Catalyst: Growth Rate and the Corresponding Microstructures of Carbon Nanofibers. Journal of Chemical Engineering of Japan, 2009, 42, S204-S211.	0.3	2
334	Hydrodynamics and mass transfer in carbon-nanofiber/graphite-felt composite under two phase flow conditions. Chemical Engineering and Processing: Process Intensification, 2011, 50, 1108-1114.	1.8	2
335	Exploiting polymorphism in the purity enhancement of lincomycin hydrochloride. Chemical Engineering Science, 2012, 77, 42-46.	1.9	2
336	Comparative Study of Clogging in Valve andÂCascade Mixers. Chemical Engineering and Technology, 2016, 39, 1451-1456.	0.9	2
337	Mechanistic insights into acid-affected hydrogenolysis of glycerol to 1,3-propanediol over an Ir–Re/SiO2 catalyst. Chemical Communications, 2022, , .	2.2	2
338	Computer-aided bimetallic catalyst screening for ester selective hydrogenation. Catalysis Science and Technology, 2022, 12, 2761-2765.	2.1	2
339	Engineering Pore Network Structure of Binders for Improved Catalytic Performance of Zeolite Pellets Using a Multiscale Model. Industrial & Engineering Chemistry Research, 2022, 61, 6354-6366.	1.8	2
340	Probing deactivation by coking in catalyst pellets for dry reforming of methane using a pore network model. Chinese Journal of Chemical Engineering, 2023, 55, 293-303.	1.7	2
341	Water Effect on Secondary Nucleation ofÂtheÂ <i>β</i> â€Form on the Surface of the <i>α</i> â€Form of <i>L</i> â€Glutamic Acid. Chemical Engineering and Technology, 2016, 39, 1295-1300.	0.9	1
342	Decoding structural complexity in conical carbon nanofibers. Physical Chemistry Chemical Physics, 2017, 19, 14555-14565.	1.3	1

#	Article	IF	CITATIONS
343	Thermal stability of nanoparticle supported on Al2O3 with different morphologies. Materials Research Express, 2019, 6, 095064.	0.8	1
344	Distribution Characteristics of Coking Products and Mechanism of Tar Lightening in Preparation of High-Strength Gasification-Coke with Low-Rank Coal Blending. Energy & Fuels, 2019, 33, 10904-10912.	2.5	1
345	Solvent Screening and Process Optimization for Separating Propylene Oxide from Direct Propylene Epoxidation with H2 and O2. Industrial & Engineering Chemistry Research, 2019, 58, 395-402.	1.8	1
346	Integrated Reactorâ€Combustor Recycling System for Safe Operation by Catalytic Removal of Excess O 2. Chemical Engineering and Technology, 2021, 44, 670-680.	0.9	1
347	Enhanced recycling performance of bimetallic Ir-Re/SiO2 catalyst by amberlyst-15 for glycerol hydrogenolysis. Chinese Journal of Chemical Engineering, 2022, 45, 171-181.	1.7	1
348	Taming Electrons in Pt/C Catalysts to Boost the Mesokinetics of Hydrogen Production. Engineering, 2022, 14, 124-133.	3.2	1
349	Reducing External Surface Diffusion Barriers by Chemical Vapor Deposition for Improved Zeolite Catalysis. Industrial & Engineering Chemistry Research, 2022, 61, 5747-5756.	1.8	1
350	Effect of hydrogen on the synthesis of carbon nanofibers by CO disproportionation on ultrafine Fe ₃ O ₄ . Asia-Pacific Journal of Chemical Engineering, 2009, 4, 590-595.	0.8	0
351	Mass Transfer Intensification in Micro-Fluidic Devices. , 2013, , 113-139.		0
352	Molecular‣evel Insights into the Notorious CO Poisoning of Platinum Catalyst. Angewandte Chemie, 0, , .	1.6	0
353	Effects of SiO2 Deposition on Surface Barriers and Catalytic Activity of Different Zeolites. Catalysis Letters, 0, , 1.	1.4	0