Brian Gainey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4662969/publications.pdf Version: 2024-02-01

1040056 888059 31 433 9 17 citations h-index g-index papers 31 31 31 186 docs citations times ranked citing authors all docs

RDIAN CAINEY

#	Article	IF	CITATIONS
1	Autoignition characterization of methanol, ethanol, propanol, and butanol over a wide range of operating conditions in LTC/HCCI. Fuel, 2021, 287, 119495.	6.4	44
2	The role of alcohol biofuels in advanced combustion: An analysis. Fuel, 2021, 283, 118915.	6.4	41
3	A Guide to Uncertainty Quantification for Experimental Engine Research and Heat Release Analysis. SAE International Journal of Engines, 0, 12, .	0.4	39
4	A parametric modeling study of thermal barrier coatings in low-temperature combustion engines. Applied Thermal Engineering, 2022, 200, 117687.	6.0	37
5	A comprehensive experimental investigation of low-temperature combustion with thick thermal barrier coatings. Energy, 2021, 222, 119954.	8.8	31
6	A split injection of wet ethanol to enable thermally stratified compression ignition. International Journal of Engine Research, 2020, 21, 1441-1453.	2.3	29
7	Thermally stratified compression ignition enabled by wet ethanol with a split injection strategy: A CFD simulation study. Applied Energy, 2019, 235, 813-826.	10.1	28
8	Catalytic partial oxidation reformation of diesel, gasoline, and natural gas for use in low temperature combustion engines. Fuel, 2019, 246, 295-307.	6.4	23
9	A system-level numerical study of a homogeneous charge compression ignition spring-assisted free piston linear alternator with various piston motion profiles. Applied Energy, 2019, 239, 820-835.	10.1	20
10	Wet ethanol in LTC: How water fraction and DTBP affect combustion and intake temperature at naturally aspirated and boosted conditions. Fuel, 2020, 267, 117094.	6.4	17
11	TSCI with Wet Ethanol: An Investigation of the Effects of Injection Strategy on a Diesel Engine Architecture. , 0, , .		16
12	HCCI with Wet Ethanol: Investigating the Charge Cooling Effect of a High Latent Heat of Vaporization Fuel in LTC. , 0, , .		14
13	Investigating the effect of spray included angle on thermally stratified compression ignition with wet ethanol using computational fluid dynamics. Applied Thermal Engineering, 2020, 170, 114964.	6.0	12
14	LTC performance of C1–C4 water-alcohol blends with the same cooling potential. Fuel, 2021, 293, 120480.	6.4	11
15	The Effects of Thick Thermal Barrier Coatings on Low-Temperature Combustion. SAE International Journal of Advances and Current Practices in Mobility, 0, 2, 1786-1799.	2.0	10
16	Tailoring thermal stratification to enable high load low temperature combustion with wet ethanol on a gasoline engine architecture. International Journal of Engine Research, 2021, 22, 2548-2559.	2.3	8
17	Assessing the impact of injector included angle and piston geometry on thermally stratified compression ignition with wet ethanol. Applied Energy, 2020, 262, 114528.	10.1	7
18	Improving the controllability of partial fuel stratification at low boost levels by applying a double late injection strategy. International Journal of Engine Research, 2021, 22, 1101-1115.	2.3	6

BRIAN GAINEY

#	Article	IF	CITATIONS
19	Exploring the Effects of Piston Bowl Geometry and Injector Included Angle on Dual-Fuel and Single-Fuel RCCI. Journal of Engineering for Gas Turbines and Power, 2021, 143, .	1.1	6
20	A fuel cell free piston gas turbine hybrid architecture for high-efficiency, load-flexible power generation. Applied Energy, 2021, 283, 116242.	10.1	5
21	Lean flammability limit of high-dilution spark ignition with ethanol, propanol, and butanol. International Journal of Engine Research, 2022, 23, 638-648.	2.3	5
22	Experimental Study of the Effect of Start of Injection and Blend Ratio on Single Fuel Reformate RCCI. Journal of Engineering for Gas Turbines and Power, 2020, 142, .	1.1	5
23	Varying Intake Stroke Injection Timing of Wet Ethanol in LTC. , 0, , .		4
24	An ultrafast multi-zone HCCI model with Autoignition, Global reaction and Interpolation (AGI) for achieving comparable accuracy to detailed chemical kinetics models. Combustion and Flame, 2020, 221, 487-501.	5.2	4
25	High Temperature HCCI Critical Compression Ratio of the C1-C4 Alcohol Fuels. SAE International Journal of Advances and Current Practices in Mobility, 0, 3, 1495-1507.	2.0	3
26	On the Effects of Injection Strategy, EGR, and Intake Boost on TSCI With Wet Ethanol. , 2019, , .		3
27	On the Effects of Injection Strategy, Exhaust Gas Recirculation, and Intake Boost on TSCI With Wet Ethanol. Journal of Engineering for Gas Turbines and Power, 2020, 142, .	1.1	2
28	High Load Compression Ignition of Wet Ethanol Using a Triple Injection Strategy. Energies, 2022, 15, 3507.	3.1	2
29	Mixing controlled compression ignition with methanol: An experimental study of injection and ECR strategy. International Journal of Engine Research, 2023, 24, 1961-1972.	2.3	1
30	Thermodynamic Analysis of Novel 4-2 Stroke Opposed Piston Engine. , 0, , .		0
31	Autoignition Characterization of Wet Isopropanol-n-Butanol-Ethanol Blends for ACI. , 0, , .		0