List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4662700/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 1997, 3, 730-737.	30.7	6,150
2	A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nature Medicine, 1998, 4, 1038-1045.	30.7	595
3	Anti-CD38 antibody–mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood, 2008, 112, 568-575.	1.4	345
4	Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34â ^{~?} fraction. Blood, 2010, 115, 1976-1984.	1.4	315
5	Bone marrow niches in haematological malignancies. Nature Reviews Cancer, 2020, 20, 285-298.	28.4	270
6	AML engraftment in the NOD/SCID assay reflects the outcome of AML: implications for our understanding of the heterogeneity of AML. Blood, 2006, 107, 1166-1173.	1.4	221
7	CD8 ⁺ minor histocompatibility antigen-specific cytotoxic T lymphocyte clones eliminate human acute myeloid leukemia stem cells. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 8639-8644.	7.1	199
8	Mutation of the Wilms' Tumor 1 Gene Is a Poor Prognostic Factor Associated With Chemotherapy Resistance in Normal Karyotype Acute Myeloid Leukemia: The United Kingdom Medical Research Council Adult Leukaemia Working Party. Journal of Clinical Oncology, 2008, 26, 5429-5435.	1.6	185
9	Increased Vascular Permeability in the Bone Marrow Microenvironment Contributes to Disease Progression and Drug Response in Acute Myeloid Leukemia. Cancer Cell, 2017, 32, 324-341.e6.	16.8	179
10	HIF-2α Protects Human Hematopoietic Stem/Progenitors and Acute Myeloid Leukemic Cells from Apoptosis Induced by Endoplasmic Reticulum Stress. Cell Stem Cell, 2013, 13, 549-563.	11.1	163
11	T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments. Nature, 2016, 538, 518-522.	27.8	159
12	Bone marrow mesenchymal stromal cells non-selectively protect chronic myeloid leukemia cells from imatinib-induced apoptosis via the CXCR4/CXCL12 axis. Haematologica, 2010, 95, 1081-1089.	3.5	145
13	"Microenvironmental contaminations―induced by fluorescent lipophilic dyes used for noninvasive in vitro and in vivo cell tracking. Blood, 2010, 115, 5347-5354.	1.4	131
14	Acute myeloid leukemia does not deplete normal hematopoietic stem cells but induces cytopenias by impeding their differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13576-13581.	7.1	120
15	Cytokine treatment or accessory cells are required to initiate engraftment of purified primitive human hematopoietic cells transplanted at limiting doses into NOD/SCID mice. Bone Marrow Transplantation, 1999, 23, 203-209.	2.4	112
16	A Niche-Like Culture System Allowing the Maintenance of Primary Human Acute Myeloid Leukemia-Initiating Cells: A New Tool to Decipher Their Chemoresistance and Self-Renewal Mechanisms. Stem Cells Translational Medicine, 2014, 3, 520-529.	3.3	95
17	Multimodal imaging reveals structural and functional heterogeneity in different bone marrow compartments: functional implications on hematopoietic stem cells. Blood, 2013, 122, 1730-1740.	1.4	91
18	Modeling the human bone marrow niche in mice: From host bone marrow engraftment to bioengineering approaches. Journal of Experimental Medicine, 2018, 215, 729-743.	8.5	91

#	Article	IF	CITATIONS
19	Dynamic responses of the haematopoietic stem cell niche to diverse stresses. Nature Cell Biology, 2020, 22, 7-17.	10.3	86
20	Versatile humanized niche model enables study of normal and malignant human hematopoiesis. Journal of Clinical Investigation, 2017, 127, 543-548.	8.2	82
21	Innovations, challenges, and minimal information for standardization of humanized mice. EMBO Molecular Medicine, 2020, 12, e8662.	6.9	82
22	CD34â^' Cells at the Apex of the Human Hematopoietic Stem Cell Hierarchy Have Distinctive Cellular and Molecular Signatures. Cell Stem Cell, 2013, 13, 161-174.	11.1	74
23	SF3B1 mutant MDS-initiating cells may arise from the haematopoietic stem cell compartment. Nature Communications, 2015, 6, 10004.	12.8	68
24	Human Erythroid Progenitors Are Directly Infected by SARS-CoV-2: Implications for Emerging Erythropoiesis in Severe COVID-19 Patients. Stem Cell Reports, 2021, 16, 428-436.	4.8	56
25	Mesenchymal niche remodeling impairs hematopoiesis via stanniocalcin 1 in acute myeloid leukemia. Journal of Clinical Investigation, 2020, 130, 3038-3050.	8.2	48
26	Updates on the hematologic tumor microenvironment and its therapeutic targeting. Haematologica, 2019, 104, 1928-1934.	3.5	42
27	Reconstitution of a functional human thymus by postnatal stromal progenitor cells and natural whole-organ scaffolds. Nature Communications, 2020, 11, 6372.	12.8	42
28	Frequency of leukemic initiating cells does not depend on the xenotransplantation model used. Leukemia, 2012, 26, 858-860.	7.2	37
29	The combination of CHK1 inhibitor with G-CSF overrides cytarabine resistance in human acute myeloid leukemia. Nature Communications, 2017, 8, 1679.	12.8	36
30	Preclinical modeling of myelodysplastic syndromes. Leukemia, 2017, 31, 2702-2708.	7.2	34
31	Role of the microenvironment in myeloid malignancies. Cellular and Molecular Life Sciences, 2018, 75, 1377-1391.	5.4	32
32	Selective inhibition of cancer cell self-renewal through a Quisinostat-histone H1.0 axis. Nature Communications, 2020, 11, 1792.	12.8	25
33	Effect of hypoxia-inducible factors in normal and leukemic stem cell regulation and their potential therapeutic impact. Expert Opinion on Biological Therapy, 2016, 16, 463-476.	3.1	24
34	Frequency and Dynamics of Leukemia-Initiating Cells during Short-term <i>Ex Vivo</i> Culture Informs Outcomes in Acute Myeloid Leukemia Patients. Cancer Research, 2016, 76, 2082-2086.	0.9	24
35	Advances in Human Immune System Mouse Models for Studying Human Hematopoiesis and Cancer Immunotherapy. Frontiers in Immunology, 2020, 11, 619236.	4.8	23
36	Different Motile Behaviors of Human Hematopoietic Stem versus Progenitor Cells at the Osteoblastic Niche. Stem Cell Reports, 2015, 5, 690-701.	4.8	21

#	Article	IF	CITATIONS
37	Activation of the receptor tyrosine kinase RET improves long-term hematopoietic stem cell outgrowth and potency. Blood, 2020, 136, 2535-2547.	1.4	21
38	Ectopic Humanized Mesenchymal Niche in Mice Enables Robust Engraftment of Myelodysplastic Stem Cells. Blood Cancer Discovery, 2021, 2, 135-145.	5.0	21
39	Generation of neighbor-labeling cells to study intercellular interactions in vivo. Nature Protocols, 2021, 16, 872-892.	12.0	19
40	Cytohesin 1 regulates homing and engraftment of human hematopoietic stem and progenitor cells. Blood, 2017, 129, 950-958.	1.4	17
41	Myelodysplastic syndrome patient-derived xenografts: from no options to many. Haematologica, 2020, 105, 864-869.	3.5	17
42	Bioengineering of Humanized Bone Marrow Microenvironments in Mouse and Their Visualization by Live Imaging. Journal of Visualized Experiments, 2017, , .	0.3	16
43	Acute myeloid leukemia xenograft success prediction: Saving time. Experimental Hematology, 2018, 59, 66-71.e4.	0.4	16
44	Single cell analyses identify a highly regenerative and homogenous human CD34+ hematopoietic stem cell population. Nature Communications, 2022, 13, 2048.	12.8	16
45	Adipocytes disrupt the translational programme of acute lymphoblastic leukaemia to favour tumour survival and persistence. Nature Communications, 2021, 12, 5507.	12.8	15
46	A 4â€gene expression score associated with high levels of <i>Wilms Tumorâ€1 (<scp>WT</scp>1)</i> expression is an adverse prognostic factor in acute myeloid leukaemia. British Journal of Haematology, 2016, 172, 401-411.	2.5	14
47	Myelodysplastic syndrome can propagate from the multipotent progenitor compartment. Haematologica, 2017, 102, e7-e10.	3.5	14
48	Nuclear Factor Erythroid 2 Regulates Human HSC Self-Renewal and T Cell Differentiation by Preventing NOTCH1 Activation. Stem Cell Reports, 2017, 9, 5-11.	4.8	14
49	Despite mutation acquisition in hematopoietic stem cells, JMML-propagating cells are not always restricted to this compartment. Leukemia, 2020, 34, 1658-1668.	7.2	14
50	Treg sensitivity to FasL and relative IL-2 deprivation drive idiopathic aplastic anemia immune dysfunction. Blood, 2020, 136, 885-897.	1.4	14
51	Loss of tRNA-modifying enzyme Elp3 activates a p53-dependent antitumor checkpoint in hematopoiesis. Journal of Experimental Medicine, 2021, 218, .	8.5	14
52	Integrated OMICs unveil the bone-marrow microenvironment in human leukemia. Cell Reports, 2021, 35, 109119.	6.4	14
53	Understanding of the crosstalk between normal residual hematopoietic stem cells and the leukemic niche in acute myeloid leukemia. Experimental Hematology, 2021, 95, 23-30.	0.4	13
54	c-Fos induces chondrogenic tumor formation in immortalized human mesenchymal progenitor cells. Scientific Reports, 2018, 8, 15615.	3.3	12

#	Article	IF	CITATIONS
55	Natural Killer Cells Improve Hematopoietic Stem Cell Engraftment by Increasing Stem Cell Clonogenicity In Vitro and in a Humanized Mouse Model. PLoS ONE, 2015, 10, e0138623.	2.5	11
56	Nature or Nurture? Role of the Bone Marrow Microenvironment in the Genesis and Maintenance of Myelodysplastic Syndromes. Cancers, 2021, 13, 4116.	3.7	11
57	Engineering human hematopoietic environments through ossicle and bioreactor technologies exploitation. Experimental Hematology, 2021, 94, 20-25.	0.4	9
58	A Humanized Bone Niche Model Reveals Bone Tissue Preservation Upon Targeting Mitochondrial Complex I in Pseudo-Orthotopic Osteosarcoma. Journal of Clinical Medicine, 2019, 8, 2184.	2.4	8
59	CKS1 inhibition depletes leukemic stem cells and protects healthy hematopoietic stem cells in acute myeloid leukemia. Science Translational Medicine, 2022, 14, .	12.4	8
60	Acute myeloid leukemia including favorable-risk group samples engraft in NSG mice: just be patient. Haematologica, 2017, 102, 805-806.	3.5	4
61	How to say NO to vascular disruption and stem cell mobilization. Expert Opinion on Therapeutic Targets, 2018, 22, 563-565.	3.4	4
62	Infecting human hematopoietic stem and progenitor cells with SARS-CoV-2. STAR Protocols, 2021, 2, 100903.	1.2	4
63	Characteristics of human primary mantle cell lymphoma engraftment in NSG mice. British Journal of Haematology, 2016, 173, 165-169.	2.5	3
64	Engraftment of Human Hematopoietic Cells in Biomaterials Implanted in Immunodeficient Mouse Models. Methods in Molecular Biology, 2021, 2308, 235-251.	0.9	1
65	Respiratory morbidity in children with congenital heart disease. Archives De Pediatrie, 2021, 28, 525-529.	1.0	1
66	Human Primary Mantle Cell Lymphoma Can Be Established in NOD/SCID/IL2Rγ-Null Mice. Blood, 2012, 120, 1565-1565.	1.4	1
67	The EHA Research Roadmap: Normal Hematopoiesis. HemaSphere, 2021, 5, e669.	2.7	1
68	DCE-MRI quantification of leukemia-induced changes in bone marrow vascular function. Haematologica, 2021, 106, 2281-2286.	3.5	0