Longguang X Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4662152/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural Basis for Recognition of Urokinase-type Plasminogen Activator by Plasminogen Activator Inhibitor-1. Journal of Biological Chemistry, 2011, 286, 7027-7032.	3.4	58
2	The Crystal Structure of the Fifth Scavenger Receptor Cysteine-Rich Domain of Porcine CD163 Reveals an Important Residue Involved in Porcine Reproductive and Respiratory Syndrome Virus Infection. Journal of Virology, 2017, 91, .	3.4	58
3	6-Substituted Hexamethylene Amiloride (HMA) Derivatives as Potent and Selective Inhibitors of the Human Urokinase Plasminogen Activator for Use in Cancer. Journal of Medicinal Chemistry, 2018, 61, 8299-8320.	6.4	56
4	A structural mechanism of flavonoids in inhibiting serine proteases. Food and Function, 2017, 8, 2437-2443.	4.6	46
5	Smart Photosensitizer: Tumor-Triggered Oncotherapy by Self-Assembly Photodynamic Nanodots. ACS Applied Materials & Interfaces, 2018, 10, 15369-15380.	8.0	34
6	Structural Basis for Therapeutic Intervention of uPA/uPAR System. Current Drug Targets, 2011, 12, 1729-1743.	2.1	33
7	New insight into molecular interaction of heavy metal pollutant—cadmium(II) with human serum albumin. Environmental Science and Pollution Research, 2014, 21, 6994-7005.	5.3	28
8	Rezymogenation of active urokinase induced by an inhibitory antibody. Biochemical Journal, 2013, 449, 161-166.	3.7	25
9	Serum Levels of Soluble Platelet Endothelial Cell Adhesion Molecule 1 in COVID-19 Patients Are Associated With Disease Severity. Journal of Infectious Diseases, 2021, 223, 178-179.	4.0	24
10	Structural Basis of Covalent Inhibitory Mechanism of TMPRSS2-Related Serine Proteases by Camostat. Journal of Virology, 2021, 95, e0086121.	3.4	24
11	Plasma levels of the active form of suPAR are associated with COVID-19 severity. Critical Care, 2020, 24, 704.	5.8	24
12	Dissociation of zinc phthalocyanine aggregation on bacterial surface is key for photodynamic antimicrobial effect. Journal of Porphyrins and Phthalocyanines, 2018, 22, 925-934.	0.8	23
13	A Cyclic Peptidic Serine Protease Inhibitor: Increasing Affinity by Increasing Peptide Flexibility. PLoS ONE, 2014, 9, e115872.	2.5	22
14	Elucidation of the Contribution of Active Site and Exosite Interactions to Affinity and Specificity of Peptidylic Serine Protease Inhibitors Using Non-Natural Arginine Analogs. Molecular Pharmacology, 2011, 80, 585-597.	2.3	21
15	6-Substituted amiloride derivatives as inhibitors of the urokinase-type plasminogen activator for use in metastatic disease. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 126753.	2.2	21
16	Improved therapeutic efficacy of quercetin-loaded polymeric nanoparticles on triple-negative breast cancer by inhibiting uPA. RSC Advances, 2020, 10, 34517-34526.	3.6	21
17	Development of inhibitors for uPAR: blocking the interaction of uPAR with its partners. Drug Discovery Today, 2021, 26, 1076-1085.	6.4	21
18	Bicyclic Peptide Inhibitor of Urokinaseâ€īype Plasminogen Activator: Mode of Action. ChemBioChem, 2013. 14. 2179-2188.	2.6	17

LONGGUANG X JIANG

#	Article	IF	CITATIONS
19	Crystal structure of a triacylglycerol lipase from <i>Penicillium expansum</i> at 1.3 Ã determined by sulfur SAD. Proteins: Structure, Function and Bioinformatics, 2010, 78, 1601-1605.	2.6	16
20	The Binding Mechanism of a Peptidic Cyclic Serine Protease Inhibitor. Journal of Molecular Biology, 2011, 412, 235-250.	4.2	16
21	Design of Specific Serine Protease Inhibitors Based on a Versatile Peptide Scaffold: Conversion of a Urokinase Inhibitor to a Plasma Kallikrein Inhibitor. Journal of Medicinal Chemistry, 2015, 58, 8868-8876.	6.4	16
22	Specifically targeting cancer proliferation and metastasis processes: the development of matriptase inhibitors. Cancer and Metastasis Reviews, 2019, 38, 507-524.	5.9	14
23	A general strategy to inhibit serine protease by targeting its autolysis loop. FASEB Journal, 2021, 35, e21259.	0.5	14
24	Enhanced anti-microbial effect through cationization of a mono-triazatricyclodecane substituted asymmetric phthalocyanine. Journal of Inorganic Biochemistry, 2018, 189, 192-198.	3.5	13
25	Enhanced Antitumor Efficacy and Imaging Application of Photosensitizer-Formulated Paclitaxel. ACS Applied Materials & Interfaces, 2020, 12, 4221-4230.	8.0	13
26	Crystal structures of the ligand-binding region of uPARAP: effect of calcium ion binding. Biochemical Journal, 2016, 473, 2359-2368.	3.7	12
27	Halogen bonding for the design of inhibitors by targeting the S1 pocket of serine proteases. RSC Advances, 2018, 8, 28189-28197.	3.6	12
28	Suppression of Tumor Growth and Metastases by Targeted Intervention in Urokinase Activity with Cyclic Peptides. Journal of Medicinal Chemistry, 2019, 62, 2172-2183.	6.4	12
29	Potent inhibition of Severe Acute Respiratory Syndrome Coronavirus 2 by photosensitizers compounds. Dyes and Pigments, 2021, 194, 109570.	3.7	12
30	Dimer conformation of soluble PECAM-1, an endothelial marker. International Journal of Biochemistry and Cell Biology, 2016, 77, 102-108.	2.8	11
31	The crystal structure of a multidomain protease inhibitor (HAI-1) reveals the mechanism of its auto-inhibition. Journal of Biological Chemistry, 2017, 292, 8412-8423.	3.4	10
32	A novel purification procedure for recombinant human serum albumin expressed in Pichia pastoris. Protein Expression and Purification, 2018, 149, 37-42.	1.3	10
33	Stereoselective interaction of cinchona alkaloid isomers with bovine serum albumin. Food Chemistry, 2015, 181, 170-178.	8.2	9
34	Selection of High-Affinity Peptidic Serine Protease Inhibitors with Increased Binding Entropy from a Back-Flip Library of Peptide–Protease Fusions. Journal of Molecular Biology, 2015, 427, 3110-3122.	4.2	9
35	Characterization of the interaction between recombinant porcine aminopeptidase N and spike glycoprotein of porcine epidemic diarrhea virus. International Journal of Biological Macromolecules, 2018, 117, 704-712.	7.5	9
36	Structural comparison of CD163 SRCR5 from different species sheds some light on its involvement in porcine reproductive and respiratory syndromeÂvirus-2 infection in vitro. Veterinary Research, 2021, 52, 97.	3.0	9

LONGGUANG X JIANG

#	Article	IF	CITATIONS
37	Crystal structure and cellular functions of uPAR dimer. Nature Communications, 2022, 13, 1665.	12.8	8
38	A study to evaluate herb-drug interaction underlying mechanisms: An investigation of ginsenosides attenuating the effect of warfarin on cardiovascular diseases. European Journal of Pharmaceutical Sciences, 2020, 142, 105100.	4.0	7
39	Self-assembled amphiphile-based nanoparticles for the inhibition of hepatocellular carcinoma metastasis via ICAM-1 mediated cell adhesion. Acta Biomaterialia, 2020, 111, 373-385.	8.3	7
40	Regulation of <scp>proâ€if ^K </scp> activation: a key checkpoint in <i>Bacillus subtilis</i> sporulation. Environmental Microbiology, 2021, 23, 2366-2373.	3.8	7
41	Functionalized zinc oxide microparticles for improving the antimicrobial effects of skin-care products and wound-care medicines. , 2022, 135, 212728.		7
42	Orally delivered rutin in lipid-based nano-formulation exerts strong antithrombotic effects by protein disulfide isomerase inhibition. Drug Delivery, 2022, 29, 1824-1835.	5.7	7
43	Insights into the serine protease mechanism based on structural observations of the conversion of a peptidyl serine protease inhibitor to a substrate. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 599-606.	2.4	6
44	Crystal structure of plasma kallikrein reveals the unusual flexibility of the S1 pocket triggered by Glu217. FEBS Letters, 2018, 592, 2658-2667.	2.8	5
45	Development of a Potent Antimicrobial Peptide With Photodynamic Activity. Frontiers in Microbiology, 2021, 12, 624465.	3.5	5
46	Disruption of Water Networks is the Cause of Human/Mouse Species Selectivity in Urokinase Plasminogen Activator (uPA) Inhibitors Derived from Hexamethylene Amiloride (HMA). Journal of Medicinal Chemistry, 2022, 65, 1933-1945.	6.4	5
47	Crystal structure of the unoccupied murine urokinaseâ€ŧype plasminogen activator receptor (<scp>uPAR</scp>) reveals a tightly packed Dll–DIII unit. FEBS Letters, 2019, 593, 1236-1247.	2.8	4
48	Crystal Structures of Human C4.4A Reveal the Unique Association of Ly6/uPAR/α-neurotoxin Domain. International Journal of Biological Sciences, 2020, 16, 981-993.	6.4	4
49	The CD163 long-range scavenger receptor cysteine-rich repeat: expression, purification and X-ray crystallographic characterization. Acta Crystallographica Section F, Structural Biology Communications, 2018, 74, 322-326.	0.8	3
50	Cleavage of peptidic inhibitors by target protease is caused by peptide conformational transition. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2017-2023.	2.4	3
51	Solution Structure of SpoIVB Reveals Mechanism of PDZ Domain-Regulated Protease Activity. Frontiers in Microbiology, 2019, 10, 1232.	3.5	3
52	A Clotâ€Homing Nearâ€Infrared Probe for In Vivo Imaging of Murine Thromboembolic Models. Advanced Healthcare Materials, 2022, 11, e2102213.	7.6	3
53	Distinctive binding modes and inhibitory mechanisms of two peptidic inhibitors of urokinase-type plasminogen activator with isomeric P1 residues. International Journal of Biochemistry and Cell Biology, 2015, 62, 88-92.	2.8	2
54	Recombinant hepatocyte growth factor activator inhibitor 1: expression inDrosophilaS2 cells, purification and crystallization. Acta Crystallographica Section F, Structural Biology Communications, 2017, 73, 45-50.	0.8	1

#	Article	IF	CITATIONS
55	Deciphering molecular interaction of binaphthyl compounds with <i>Penicillium expansum</i> lipase: enantioselectivity and reactivity prediction for lipase. Molecular Systems Design and Engineering, 2018, 3, 658-667.	3.4	1
56	Insight to the residue in P2 position prevents the peptide inhibitor from being hydrolyzed by serine proteases. Bioscience, Biotechnology and Biochemistry, 2020, 84, 1153-1159.	1.3	1
57	Crystal structure, epitope, and functional impact of an antibody against a superactive FVII a provide insights into allosteric mechanism. Research and Practice in Thrombosis and Haemostasis, 2019, 3, 412-419.	2.3	0
58	Structural determination of group A Streptococcal surface dehydrogenase and characterization of its interaction with urokinase-type plasminogen activator receptor. Biochemical and Biophysical Research Communications, 2019, 510, 539-544.	2.1	0
59	13 Tumor-specific imaging and photodynamic therapy targeting the urokinase receptor. Series in Cellular and Clinical Imaging, 2017, , 259-274.	0.2	0