Baochun Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4662060/publications.pdf

Version: 2024-02-01

23567 36028 10,865 172 58 97 citations h-index g-index papers 175 175 175 7449 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A facile one-pot route to elastomeric vitrimers with tunable mechanical performance and superior creep resistance. Polymer, 2022, 238, 124379.	3.8	15
2	A bio-based, robust and recyclable thermoset polyester elastomer by using an inverse vulcanised polysulfide as a crosslinker. Polymer Chemistry, 2022, 13, 485-491.	3.9	11
3	Surface modification of waste silicone rubber via alcoholysis reaction and its application in polypropylene toughening. Journal of Polymer Research, 2022, 29, 1.	2.4	1
4	Heterogeneous network design strategy toward mechanically robust and recyclable elastomers. Polymer, 2022, 245, 124710.	3.8	0
5	Extrudable Vitrimeric Rubbers Enabled via Heterogeneous Network Design. Macromolecules, 2022, 55, 3236-3248.	4.8	22
6	Creating molecular bridges across the interfaces in segregated composites toward improved conductive and mechanical properties. Composites Science and Technology, 2022, 222, 109377.	7.8	11
7	Adamantane imine as a seminal interfacial mediator toward rubber/carbon black composites with superior energy-saving capability and aging resistance. Composites Science and Technology, 2022, 225, 109482.	7.8	6
8	Use of naturally small molecule as an intelligent interfacial modifier for strengthening and toughening silica-filled rubber composite. Composites Science and Technology, 2022, 227, 109624.	7.8	11
9	Rubber-reinforced rubbers toward the combination of high reinforcement and low energy loss. Nano Energy, 2021, 83, 105822.	16.0	24
10	Generic Method to Create Segregated Structures toward Robust, Flexible, Highly Conductive Elastomer Composites. ACS Applied Materials & Samp; Interfaces, 2021, 13, 24154-24163.	8.0	17
11	Carbon nanodots as an eco-friendly activator of sulphur vulcanization in diene-rubber composites. Composites Communications, 2021, 25, 100755.	6.3	12
12	Recyclable crosslinked elastomer based on dynamic dithioacetals. Polymer, 2021, 229, 124007.	3.8	17
13	The use of inverse vulcanised polysulfide as an intelligent interfacial modifier in rubber/carbon black composites. Carbon, 2021, 184, 409-417.	10.3	23
14	Polyrhodanine mediated interface in natural rubber/carbon black composites toward ultralow energy loss. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106589.	7.6	18
15	Engineering Segregated Structures in a Cross-Linked Elastomeric Network Enabled by Dynamic Cross-Link Reshuffling. ACS Macro Letters, 2021, 10, 231-236.	4.8	33
16	Creation of Tortuosity in Unfilled Rubber via Heterogeneous Cross-Linking toward Improved Barrier Property. Macromolecules, 2021, 54, 11522-11532.	4.8	8
17	Tuning the mechanical and dynamic properties of imine bond crosslinked elastomeric vitrimers by manipulating the crosslinking degree. Polymer Chemistry, 2020, 11, 1348-1355.	3.9	100
18	Facile Strategy for the Biomimetic Heterogeneous Design of Elastomers with Mechanical Robustness, Malleability, and Functionality. ACS Macro Letters, 2020, 9, 49-55.	4.8	20

#	Article	IF	Citations
19	Iron ion cluster-OH coordination as high-efficiency sacrificial bond for reinforcement of elastomer. Polymer, 2020, 186, 122059.	3.8	23
20	Crosslinking diene rubbers by using an inverse vulcanised co-polymer. Green Chemistry, 2020, 22, 7337-7342.	9.0	25
21	Notably Improved Dispersion of Carbon Black for High-Performance Natural Rubber Composites via Triazolinedione Click Chemistry. Industrial & Engineering Chemistry Research, 2020, 59, 21047-21057.	3.7	23
22	Catalyst-Free Metathesis of Cyclic Acetals and Spirocyclic Acetal Covalent Adaptable Networks. ACS Macro Letters, 2020, 9, 1143-1148.	4.8	32
23	Dispersing carbon dots in non-polar rubber by slurry compounding and in situ compatibilizing. Composites Communications, 2020, 22, 100429.	6.3	13
24	Effects of dynamic covalent bond multiplicity on the performance of vitrimeric elastomers. Journal of Materials Chemistry A, 2020, 8, 20503-20512.	10.3	36
25	Design of next-generation cross-linking structure for elastomers toward green process and a real recycling loop. Science Bulletin, 2020, 65, 889-898.	9.0	58
26	Solving "magic triangle―of tread rubber composites with phosphonium-modified petroleum resin. Polymer, 2020, 190, 122244.	3.8	27
27	Bioinspired design of elastomeric vitrimers with sacrificial metal-ligand interactions leading to supramechanical robustness and retentive malleability. Materials and Design, 2020, 192, 108756.	7.0	42
28	Elastomer Reinforced with Innate Sulfur-Based Cross-Links as Ligands. ACS Macro Letters, 2019, 8, 1091-1095.	4.8	11
29	Promoted dispersion of silica and interfacial strength in rubber/silica composites by grafting with oniums. Journal of Applied Polymer Science, 2019, 136, 48243.	2.6	16
30	Integrating transient and sacrificial bonds into biobased elastomers toward mechanical property enhancement and macroscopically responsive property. Polymer, 2019, 184, 121914.	3.8	20
31	Effects of Alkalinity of Ionic Liquid on Catalyzed Silanization in Rubber/Silica Composites. Industrial & Lamp; Engineering Chemistry Research, 2019, 58, 18654-18662.	3.7	23
32	A scalable strategy for constructing three-dimensional segregated graphene network in polymer via hydrothermal self-assembly. Chemical Engineering Journal, 2019, 363, 300-308.	12.7	42
33	Integrating Sacrificial Bonds into Dynamic Covalent Networks toward Mechanically Robust and Malleable Elastomers. ACS Macro Letters, 2019, 8, 193-199.	4.8	165
34	Malleable organic/inorganic thermosetting hybrids enabled by exchangeable silyl ether interfaces. Journal of Materials Chemistry A, 2019, 7, 1459-1467.	10.3	71
35	Mechanically Robust and Recyclable EPDM Rubber Composites by a Green Cross-Linking Strategy. ACS Sustainable Chemistry and Engineering, 2019, 7, 11712-11720.	6.7	84
36	Enhanced comprehensive performance of SSBR/BR with self-assembly reduced graphene oxide/silica nanocomposites. Composites Part B: Engineering, 2019, 175, 107027.	12.0	34

#	Article	IF	CITATIONS
37	Mechanically Robust, Self-Healable, and Reprocessable Elastomers Enabled by Dynamic Dual Cross-Links. Macromolecules, 2019, 52, 3805-3812.	4.8	224
38	Promoted strain-induced crystallization of cis-1, 4-polyisoprene with functional carbon nanodots. Advanced Industrial and Engineering Polymer Research, 2019, 2, 25-31.	4.7	1
39	Uniaxial Stretching-Induced Alignment of Carbon Nanotubes in Cross-Linked Elastomer Enabled by Dynamic Cross-Link Reshuffling. ACS Macro Letters, 2019, 8, 1575-1581.	4.8	43
40	Biomimetic design of elastomeric vitrimers with unparalleled mechanical properties, improved creep resistance and retained malleability by metal–ligand coordination. Journal of Materials Chemistry A, 2019, 7, 26867-26876.	10.3	83
41	Concurrently improved dispersion and interfacial interaction in rubber/nanosilica composites via efficient hydrosilane functionalization. Composites Science and Technology, 2019, 169, 217-223.	7.8	58
42	Bioinspired engineering of sacrificial bonds into rubber networks towards high-performance and functional elastomers. Composites Communications, 2018, 8, 65-73.	6.3	40
43	Regulation of mechanical properties of diene rubber cured by oxa-Michael Reaction via manipulating network structure. Polymer, 2018, 144, 57-64.	3.8	22
44	A green method for preparing conductive elastomer composites with interconnected graphene network via Pickering emulsion templating. Chemical Engineering Journal, 2018, 342, 112-119.	12.7	44
45	Significantly improved rubber-silica interface via subtly controlling surface chemistry of silica. Composites Science and Technology, 2018, 156, 70-77.	7.8	99
46	Engineering of β-Hydroxyl Esters into Elastomer–Nanoparticle Interface toward Malleable, Robust, and Reprocessable Vitrimer Composites. ACS Applied Materials & Samp; Interfaces, 2018, 10, 2992-3001.	8.0	150
47	Dispersion of graphene in chlorosulfonated polyethylene by slurry compounding. Composites Science and Technology, 2018, 162, 156-162.	7.8	22
48	A real recycling loop of sulfur-cured rubber through transalkylation exchange of C–S bonds. Green Chemistry, 2018, 20, 5454-5458.	9.0	40
49	Significantly Improving Strength and Damping Performance of Nitrile Rubber via Incorporating Sliding Graft Copolymer. Industrial & Damping Chemistry Research, 2018, 57, 16692-16700.	3.7	18
50	Programming dynamic imine bond into elastomer/graphene composite toward mechanically strong, malleable, and multi-stimuli responsive vitrimer. Composites Science and Technology, 2018, 168, 214-223.	7.8	74
51	Reprocessable and robust crosslinked elastomers via interfacial C N transalkylation of pyridinium. Composites Science and Technology, 2018, 168, 320-326.	7.8	51
52	Sustainable, recyclable and robust elastomers enabled by exchangeable interfacial cross-linking. Journal of Materials Chemistry A, 2018, 6, 13607-13612.	10.3	83
53	Covalently Cross-Linked Elastomers with Self-Healing and Malleable Abilities Enabled by Boronic Ester Bonds. ACS Applied Materials & Diterfaces, 2018, 10, 24224-24231.	8.0	274
54	Toughening Elastomers Using a Mussel-Inspired Multiphase Design. ACS Applied Materials & Samp; Interfaces, 2018, 10, 23485-23489.	8.0	57

#	Article	IF	Citations
55	Exchangeable interfacial crosslinks towards mechanically robust elastomer/carbon nanotubes vitrimers. Composites Science and Technology, 2018, 165, 24-30.	7.8	73
56	A slurry compounding route to disperse graphene oxide in rubber. Materials Letters, 2017, 191, 93-96.	2.6	15
57	Nanodot-Loaded Clay Nanotubes as Green and Sustained Radical Scavengers for Elastomer. ACS Sustainable Chemistry and Engineering, 2017, 5, 1775-1783.	6.7	49
58	Generic Mechanochemical Grafting Strategy toward Organophilic Carbon Nanotubes. ACS Applied Materials & Samp; Interfaces, 2017, 9, 7666-7674.	8.0	11
59	Bioinspired Design of a Robust Elastomer with Adaptive Recovery via Triazolinedione Click Chemistry. Macromolecular Rapid Communications, 2017, 38, 1600678.	3.9	37
60	Carbon Nanodots as High-Functionality Cross-Linkers for Bioinspired Engineering of Multiple Sacrificial Units toward Strong yet Tough Elastomers. Macromolecules, 2017, 50, 3244-3253.	4.8	66
61	High-performance rubber/boehmite nanoplatelets composites by judicious in situ interfacial design. Composites Science and Technology, 2017, 146, 191-197.	7.8	27
62	Coating polyrhodanine onto boron nitride nanosheets for thermally conductive elastomer composites. Composites Part A: Applied Science and Manufacturing, 2017, 94, 77-85.	7.6	48
63	Malleable, Mechanically Strong, and Adaptive Elastomers Enabled by Interfacial Exchangeable Bonds. Macromolecules, 2017, 50, 7584-7592.	4.8	160
64	Progress in bio-inspired sacrificial bonds in artificial polymeric materials. Chemical Society Reviews, 2017, 46, 6301-6329.	38.1	157
65	Preparation and performance of bio-based carboxylic elastomer/halloysite nanotubes nanocomposites with strong interfacial interaction. Composites Part A: Applied Science and Manufacturing, 2017, 102, 253-262.	7.6	17
66	An advanced elastomer with an unprecedented combination of excellent mechanical properties and high self-healing capability. Journal of Materials Chemistry A, 2017, 5, 25660-25671.	10.3	128
67	Interphase Percolation Mechanism Underlying Elastomer Reinforcement. Journal of Physical Chemistry C, 2017, 121, 28594-28603.	3.1	7
68	CHALLENGE OF RUBBER/GRAPHENE COMPOSITES AIMING AT REAL APPLICATIONS. Rubber Chemistry and Technology, 2017, 90, 225-237.	1.2	16
69	Rational design of covalent interfaces for graphene/elastomer nanocomposites. Composites Science and Technology, 2016, 132, 68-75.	7.8	86
70	Bioinspired Interface Engineering in Elastomer/Graphene Composites by Constructing Sacrificial Metal–Ligand Bonds. Macromolecular Rapid Communications, 2016, 37, 1040-1045.	3.9	71
71	Remarkably improving performance of carbon black-filled rubber composites by incorporating MoS2 nanoplatelets. Composites Science and Technology, 2016, 132, 93-100.	7.8	72
72	Low permeability styrene butadiene rubber/boehmite nanocomposites modified with tannic acid. Materials and Design, 2016, 103, 25-31.	7.0	24

#	Article	IF	CITATIONS
73	A Novel and Non-Cytotoxic Self-Healing Supramolecular Elastomer Synthesized with Small Molecular Biological Acids. Macromolecular Rapid Communications, 2016, 37, 1603-1610.	3.9	21
74	Correlating synergistic reinforcement with chain motion in elastomer/nanocarbon hybrids composites. Soft Matter, 2016, 12, 6893-6901.	2.7	27
75	Enabling Design of Advanced Elastomer with Bioinspired Metal–Oxygen Coordination. ACS Applied Materials & Discrete Samp; Interfaces, 2016, 8, 32520-32527.	8.0	87
76	Bioinspired Engineering of Two Different Types of Sacrificial Bonds into Chemically Cross-Linked <i>cis</i> -1,4-Polyisoprene toward a High-Performance Elastomer. Macromolecules, 2016, 49, 8593-8604.	4.8	142
77	Strikingly improved toughness of nonpolar rubber by incorporating sacrificial network at small fraction. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 781-786.	2.1	29
78	Transport performance in novel elastomer nanocomposites: Mechanism, design and control. Progress in Polymer Science, 2016, 61, 29-66.	24.7	128
79	Dispersion and dynamic property in SBR/silica composites: Revisiting the utilization of benzyl chloride silane. Polymer Composites, 2016, 37, 446-454.	4.6	5
80	Surface modification of halloysite nanotubes by vulcanization accelerator and properties of styrene-butadiene rubber nanocomposites with modified halloysite nanotubes. Applied Surface Science, 2016, 366, 193-201.	6.1	40
81	Reversible plasticity shape memory polymers: Key factors and applications. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1295-1299.	2.1	18
82	Bioinspired Engineering of Sacrificial Metal–Ligand Bonds into Elastomers with Supramechanical Performance and Adaptive Recovery. Macromolecules, 2016, 49, 1781-1789.	4.8	238
83	Wrapping of polyrhodanine onto tubular clay and its prominent effects on the reinforcement of the clay for rubber. Composites Part A: Applied Science and Manufacturing, 2016, 84, 344-353.	7.6	25
84	Scalable fabrication of thermally conductive elastomer/boron nitride nanosheets composites by slurry compounding. Composites Science and Technology, 2016, 123, 179-186.	7.8	83
85	Sustainable Carbon Nanodots with Tunable Radical Scavenging Activity for Elastomers. ACS Sustainable Chemistry and Engineering, 2016, 4, 247-254.	6.7	39
86	Preparation of halloysite nanotubes supported 2-mercaptobenzimidazole and its application in natural rubber. Composites Part A: Applied Science and Manufacturing, 2015, 73, 63-71.	7.6	62
87	Sustainable shape memory polymers based on epoxidized natural rubber cured by zinc ferulate via oxa-Michael reaction. International Journal of Smart and Nano Materials, 2015, 6, 195-210.	4.2	4
88	New evidence disclosed for networking in natural rubber by dielectric relaxation spectroscopy. Soft Matter, 2015, 11, 2290-2299.	2.7	48
89	Effects of substitution for carbon black with graphene oxide or graphene on the morphology and performance of natural rubber/carbon black composites. Journal of Applied Polymer Science, 2015, 132,	2.6	23
90	Renewable conjugated acids as curatives for high-performance rubber/silica composites. Green Chemistry, 2015, 17, 3301-3305.	9.0	30

#	Article	IF	Citations
91	Interface Engineering toward Promoting Silanization by Ionic Liquid for High-Performance Rubber/Silica Composites. Industrial & Engineering Chemistry Research, 2015, 54, 10747-10756.	3.7	99
92	Graphene oxide/rhodanine redox chemistry and its application in designing high-performance elastomer/graphene composites. RSC Advances, 2015, 5, 84398-84405.	3.6	21
93	CORRELATION OF FILLER NETWORKING WITH REINFORCEMENT AND DYNAMIC PROPERTIES OF SSBR/CARBON BLACK/SILICA COMPOSITES. Rubber Chemistry and Technology, 2015, 88, 676-689.	1.2	33
94	Preparation of rubber/graphene oxide composites with in-situ interfacial design. Polymer, 2015, 56, 553-562.	3.8	124
95	Rational Design of Graphene Surface Chemistry for High-Performance Rubber/Graphene Composites. Macromolecules, 2014, 47, 8663-8673.	4.8	164
96	A generic solvent exchange method to disperse MoS2 in organic solvents to ease the solution process. Chemical Communications, 2014, 50, 3934.	4.1	68
97	Using a green method to develop graphene oxide/elastomers nanocomposites with combination of high barrier and mechanical performance. Composites Science and Technology, 2014, 92, 1-8.	7.8	179
98	Probing the unexpected behavior of AuNPs migrating through nanofibers: a new strategy for the fabrication of carbon nanofiber–noble metal nanocrystal hybrid nanostructures. Journal of Materials Chemistry A, 2014, 2, 11728-11741.	10.3	28
99	Synthesis and characterization of biobased isosorbide-containing copolyesters as shape memory polymers for biomedical applications. Journal of Materials Chemistry B, 2014, 2, 7877-7886.	5.8	60
100	Preparation and characterization of high strength and noncytotoxic bioelastomers containing isosorbide. RSC Advances, 2014, 4, 19462.	3.6	19
101	Synthesis of bio-based copolyester and its reinforcement with zinc diacrylate for shape memory application. Polymer, 2014, 55, 4324-4331.	3.8	25
102	Liquefied Graphene Oxide with Excellent Amphiphilicity. Chemistry Letters, 2014, 43, 222-224.	1.3	3
103	Effects of interfacial interaction on chain dynamics of rubber/graphene oxide hybrids: a dielectric relaxation spectroscopy study. RSC Advances, 2013, 3, 14549.	3.6	48
104	Curing of Rubber via Oxa-Michael Reaction toward Significantly Increased Aging Resistance. Industrial & Lamp; Engineering Chemistry Research, 2013, 52, 18123-18130.	3.7	32
105	Sodium Humate Functionalized Graphene and Its Unique Reinforcement Effects for Rubber. Industrial & Lamp; Engineering Chemistry Research, 2013, 52, 14592-14600.	3.7	40
106	The use of a hybrid consisting of tubular clay and graphene as a reinforcement for elastomers. RSC Advances, 2013, 3, 17057.	3.6	54
107	Elastic-resilience-induced dispersion of carbon nanotubes: a novel way of fabricating high performance elastomer. Nanotechnology, 2013, 24, 465708.	2.6	8
108	Incorporation of graphene into polyester/carbon nanofibers composites for better multi-stimuli responsive shape memory performances. Carbon, 2013, 64, 487-498.	10.3	63

#	Article	IF	Citations
109	Vapor grown carbon nanofiber reinforced bio-based polyester for electroactive shape memory performance. Composites Science and Technology, 2013, 75, 15-21.	7.8	84
110	Scalable and Versatile Graphene Functionalized with the Mannich Condensate. ACS Applied Materials & Samp; Interfaces, 2013, 5, 2174-2181.	8.0	28
111	Optimization of mechanical performance of compatibilized polypropylene/poly(ethylene terephthalate) blends via selective dispersion of halloysite nanotubes in the blend. Journal of Applied Polymer Science, 2013, 129, 47-56.	2.6	16
112	Structure and Properties of Poly(vinyl chloride)/Halloysite Nanotubes Nanocomposites. Journal of Macromolecular Science - Physics, 2012, 51, 968-981.	1.0	17
113	General route to graphene with liquid-like behavior by non-covalent modification. Soft Matter, 2012, 8, 9214.	2.7	88
114	Stronger and Faster Degradable Biobased Poly(propylene sebacate) as Shape Memory Polymer by Incorporating Boehmite Nanoplatelets. ACS Applied Materials & Samp; Interfaces, 2012, 4, 4006-4014.	8.0	41
115	Preparation of butadiene–styrene–vinyl pyridine rubber–graphene oxide hybrids through co-coagulation process and in situ interface tailoring. Journal of Materials Chemistry, 2012, 22, 7492.	6.7	167
116	Grafting of Polyester onto Graphene for Electrically and Thermally Conductive Composites. Macromolecules, 2012, 45, 3444-3451.	4.8	188
117	Preparation and Application of a New Curing Agent for Epoxy Resin. International Journal of Polymeric Materials and Polymeric Biomaterials, 2012, 61, 520-531.	3.4	20
118	Dispersing Graphene in Hydroxypropyl Cellulose by Utilizing its LCST Behavior. Macromolecular Chemistry and Physics, 2012, 213, 1370-1377.	2.2	16
119	The use of rhodamine B-decorated graphene as a reinforcement in polyvinyl alcohol composites. Polymer, 2012, 53, 673-680.	3.8	76
120	Preparing Exfoliated MMT/Polymer Nanocomposites by Combined Latex Compounding and Sprayâ€Drying. Macromolecular Materials and Engineering, 2012, 297, 20-25.	3.6	11
121	Thiolâ€containing ionic liquid for the modification of styrene–butadiene rubber/silica composites. Journal of Applied Polymer Science, 2012, 123, 1252-1260.	2.6	41
122	Biobased Poly(propylene sebacate) as Shape Memory Polymer with Tunable Switching Temperature for Potential Biomedical Applications. Biomacromolecules, 2011, 12, 1312-1321.	5.4	170
123	Polyphenol-Reduced Graphene Oxide: Mechanism and Derivatization. Journal of Physical Chemistry C, 2011, 115, 20740-20746.	3.1	104
124	Hydrolysable tannin as environmentally friendly reducer and stabilizer for graphene oxide. Green Chemistry, 2011, 13, 1655.	9.0	235
125	Reinforced Rubber with Ionic Liquid Modifued Carbon Black. Polymers and Polymer Composites, 2011, 19, 593-602.	1.9	3
126	Interfacial structure and performance of rubber/boehmite nanocomposites modified by methacrylic acid. Polymer, 2011, 52, 4387-4395.	3.8	49

#	Article	IF	CITATIONS
127	Fluorescent whitening agent stabilized graphene and its composites with chitosan. Journal of Materials Chemistry, 2011, 21, 17111.	6.7	33
128	Functional thiol ionic liquids as novel interfacial modifiers in SBR/HNTs composites. Polymer, 2011, 52, 1337-1344.	3.8	120
129	Poly(vinyl alcohol)/halloysite nanotubes bionanocomposite films: Properties and <i>in vitro</i> osteoblasts and fibroblasts response. Journal of Biomedical Materials Research - Part A, 2010, 93A, 1574-1587.	4.0	71
130	Effects of halloysite nanotubes on kinetics and activation energy of non-isothermal crystallization of polypropylene. Journal of Polymer Research, 2010, 17, 109-118.	2.4	73
131	Tailoring the wettability of polypropylene surfaces with halloysite nanotubes. Journal of Colloid and Interface Science, 2010, 350, 186-193.	9.4	78
132	Reinforcing thermoplastics with hydrogen bonding bridged inorganics. Physica B: Condensed Matter, 2010, 405, 655-662.	2.7	37
133	Newly emerging applications of halloysite nanotubes: a review. Polymer International, 2010, 59, 574-582.	3.1	605
134	Significantly improved performance of rubber/silica composites by addition of sorbic acid. Polymer Journal, 2010, 42, 319-326.	2.7	25
135	SBR/silica composites modified by a polymerizable protic ionic liquid. Polymer Journal, 2010, 42, 555-561.	2.7	23
136	Superhydrophobic surfaces with nanofibers or nanorods based on thiophene derivatives. Applied Physics Letters, 2010, 96, .	3.3	4
137	High perfermance light-colored rubber nanocomposites. , 2010, , .		0
138	Styrene-butadiene rubber/halloysite nanotubes composites modified by epoxidized natural rubber. , 2010, , .		0
139	Tubular Clay Composites with High Strength and Transparency. Journal of Macromolecular Science - Physics, 2010, 49, 111-121.	1.0	10
140	Adsorption of Ionic Liquid onto Halloysite Nanotubes: Mechanism and Reinforcement of the Modified Clay to Rubber. Journal of Macromolecular Science - Physics, 2010, 49, 1029-1043.	1.0	48
141	Influence of hybrid fibrils of 2,5-bis(2-benzoxazolyl) thiophene and halloysite nanotubes on the crystallization behaviour of polypropylene. Journal Physics D: Applied Physics, 2009, 42, 075306.	2.8	7
142	Crystallization behavior of polyamide 6/halloysite nanotubes nanocomposites. Thermochimica Acta, 2009, 484, 48-56.	2.7	125
143	Halloysite nanotubes as a novel \hat{l}^2 -nucleating agent for isotactic polypropylene. Polymer, 2009, 50, 3022-3030.	3.8	206
144	Benzothiazole sulfide compatibilized polypropylene/halloysite nanotubes composites. Applied Surface Science, 2009, 255, 4961-4969.	6.1	45

#	Article	IF	CITATIONS
145	Structure evolution of carbon black under ionic-liquid-assisted microwave irradiation. Applied Surface Science, 2009, 255, 8488-8493.	6.1	13
146	Styrene-butadiene rubber/halloysite nanotubes nanocomposites modified by sorbic acid. Applied Surface Science, 2009, 255, 7329-7336.	6.1	132
147	Structure and Performance of Polyamide 6/Halloysite Nanotubes Nanocomposites. Polymer Journal, 2009, 41, 835-842.	2.7	87
148	Reinforcing and Flame-Retardant Effects of Halloysite Nanotubes on LLDPE. Polymer-Plastics Technology and Engineering, 2009, 48, 607-613.	1.9	123
149	Carboxylated butadiene–styrene rubber/halloysite nanotube nanocomposites: Interfacial interaction and performance. Polymer, 2008, 49, 4871-4876.	3.8	221
150	Natural inorganic nanotubes reinforced epoxy resin nanocomposites. Journal of Polymer Research, 2008, 15, 205-212.	2.4	140
151	Structure and properties of polypropylene/clay nanocomposites compatibilized by solidâ€phase grafted polypropylene. Polymer Composites, 2008, 29, 698-701.	4.6	18
152	Polymerâ€modified halloysite composite nanotubes. Journal of Applied Polymer Science, 2008, 110, 3638-3646.	2.6	69
153	Styrene–butadiene rubber/halloysite nanotubes nanocomposites modified by methacrylic acid. Applied Surface Science, 2008, 255, 2715-2722.	6.1	108
154	The Role of Interactions between Halloysite Nanotubes and 2,2′-(1,2-Ethenediyldi-4,1-phenylene) Bisbenzoxazole in Halloysite Reinforced Polypropylene Composites. Polymer Journal, 2008, 40, 1087-1093.	2.7	30
155	Interactions between halloysite nanotubes and 2,5-bis(2-benzoxazolyl) thiophene and their effects on reinforcement of polypropylene/halloysite nanocomposites. Nanotechnology, 2008, 19, 205709.	2.6	114
156	Morphology and properties of halloysite nanotubes reinforced polypropylene nanocomposites. E-Polymers, 2008, 8, .	3.0	10
157	Properties of halloysite nanotube–epoxy resin hybrids and the interfacial reactions in the systems. Nanotechnology, 2007, 18, 455703.	2.6	253
158	Thermal Decomposition and Oxidation Ageing Behaviour of Polypropylene/Halloysite Nanotube Nanocomposites. Polymers and Polymer Composites, 2007, 15, 321-328.	1.9	30
159	Formation of Reinforcing Inorganic Network in Polymer via Hydrogen Bonding Self-Assembly Process. Polymer Journal, 2007, 39, 208-212.	2.7	41
160	Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene). European Polymer Journal, 2006, 42, 1362-1369.	5.4	429
161	Preparation and Characterization of Polypropylene Grafted Halloysite and Their Compatibility Effect to Polypropylene/Halloysite Composite. Polymer Journal, 2006, 38, 1198-1204.	2.7	59
162	Preparation, structure and properties of nitrile–butadiene rubber–organoclay nanocomposites by reactive mixing intercalation method. Journal of Applied Polymer Science, 2006, 100, 1905-1913.	2.6	58

#	Article	IF	CITATION
163	How organo-montmorillonite truly affects the structure and properties of polypropylene. Polymer Testing, 2005, 24, 94-100.	4.8	129
164	Preparation and structure of highly confined intercalated polystyrene/montmorillonite nanocomposite via a two-step method. European Polymer Journal, 2005, 41, 1781-1786.	5.4	38
165	Effects of Thermal and UV-induced Grafting of Bismaleimide on Mechanical Performance of Reclaimed Rubber/Natural Rubber Blends. Journal of Polymer Research, 2005, 12, 473-482.	2.4	23
166	Exploitation of introducing of catalytic centers into layer galleries of layered silicates and related epoxy nanocomposites. I. Epoxy nanocomposites derived from montmorillonite modified with catalytic surfactant-bearing carboxyl groups. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 1192-1198.	2.1	18
167	Effects of epoxy content on dynamic mechanical behaviour of PEI-toughened dicyanate–novolac epoxy blends. Polymer International, 2004, 53, 1378-1381.	3.1	7
168	Thermoplastic Elastomers Derived from Scrap Rubber Powder/LLDPE Blend with LLDPE-graft-(Epoxidized Natural Rubber) Dual Compatibilizer. Macromolecular Materials and Engineering, 2004, 289, 360-367.	3.6	28
169	Effects of organo-montmorillonite dispersion on thermal stability of epoxy resin nanocomposites. European Polymer Journal, 2004, 40, 1743-1748.	5.4	121
170	Hygrothermal stability of dicyanate-novolac epoxy resin blends. Polymer Degradation and Stability, 2003, 79, 521-528.	5.8	30
171	Cure Behaviour and Structure of Dicyanate-Epoxy Novolac Blends. Polymers and Polymer Composites, 2002, 10, 237-248.	1.9	8
172	Microwaveâ€assisted alcoholysis of silicone rubber waste with geraniol for effective elastomer damping. Polymer Engineering and Science, 0, , .	3.1	3