Marián Castro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4661083/publications.pdf

Version: 2024-02-01

51	2,149	20	45
papers	citations	h-index	g-index
52	52	52	3001 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Allosteric modulation of dopamine D2L receptor in complex with Gi1 and Gi2 proteins: the effect of subtle structural and stereochemical ligand modifications. Pharmacological Reports, 2022, 74, 406-424.	3.3	5
2	Design and Synthesis of Arylpiperazine Serotonergic/Dopaminergic Ligands with Neuroprotective Properties. Molecules, 2022, 27, 1297.	3.8	1
3	An Experience of Using a Canvas-Based Template for Blended-Learning in a Master in Drug Discovery. International Journal of Emerging Technologies in Learning, 2022, 17, 257-267.	1.3	1
4	In vitro and in vivo evaluation of antioxidant and neuroprotective properties of antipsychotic D2AAK1. Neurochemical Research, 2022, 47, 1778-1789.	3. 3	2
5	Multitarget Derivatives of D2AAK1 as Potential Antipsychotics: The Effect of Substitution in the Indole Moiety. ChemMedChem, 2022, 17, .	3.2	5
6	Knowledge-Based Design of Long-Chain Arylpiperazine Derivatives Targeting Multiple Serotonin Receptors as Potential Candidates for Treatment of Autism Spectrum Disorder. ACS Chemical Neuroscience, 2021, 12, 1313-1327.	3 . 5	10
7	N-(3-{4-[3-(trifluoromethyl)phenyl]piperazin-1-yl}propyl)-1H-indazole-3-carboxamide (D2AAK3) as a potential antipsychotic: In vitro, in silico and in vivo evaluation of a multi-target ligand. Neurochemistry International, 2021, 146, 105016.	3 . 8	10
8	N-(2-Hydroxyphenyl)-1-[3-(2-oxo-2,3-dihydro-1H- benzimidazol-1-yl)propyl]piperidine-4-Carboxamide (D2AAK4), a Multi-Target Ligand of Aminergic GPCRs, as a Potential Antipsychotic. Biomolecules, 2020, 10, 349.	4.0	14
9	1-(2′-Bromobenzyl)-6,7-dihydroxy- <i>N</i> -methyl-tetrahydroisoquinoline and 1,2-Demethyl-nuciferine as Agonists in Human D ₂ Dopamine Receptors. Journal of Natural Products, 2020, 83, 127-133.	3.0	9
10	Essential role of the C148–C227 disulphide bridge in the human 5-HT2A homodimeric receptor. Biochemical Pharmacology, 2020, 177, 113985.	4.4	4
11	New Serotoninergic Ligands Containing Indolic and Methyl Indolic Nuclei: Synthesis and In Vitro Pharmacological Evaluation. Medicinal Chemistry, 2020, 16, 517-530.	1.5	1
12	Synthesis, pharmacological and structural studies of 5-substituted-3-(1-arylmethyl-1,2,3,6-tetrahydropyridin-4-yl)-1H-indoles as multi-target ligands of aminergic GPCRs. European Journal of Medicinal Chemistry, 2019, 180, 673-689.	5 . 5	19
13	2-Aryladenine derivatives as a potent scaffold for A1, A3 and dual A1/A3 adenosine receptor antagonists: Synthesis and structure-activity relationships. Bioorganic and Medicinal Chemistry, 2019, $27,3551-3558$.	3.0	4
14	Phenolic Imidazole Derivatives with Dual Antioxidant/Antifungal Activity: Synthesis and Structure-Activity Relationship. Medicinal Chemistry, 2019, 15, 341-351.	1.5	9
15	New Nitrogen Compounds Coupled to Phenolic Units with Antioxidant and Antifungal Activities: Synthesis and Structure–Activity Relationship. Molecules, 2018, 23, 2530.	3.8	9
16	Synthesis, Structural and Thermal Studies of 3-(1-Benzyl-1,2,3,6-tetrahydropyridin-4-yl)-5-ethoxy-1H-indole (D2AAK1_3) as Dopamine D2 Receptor Ligand. Molecules, 2018, 23, 2249.	3.8	11
17	Development of Fluorescent Probes that Target Serotonin 5-HT2B Receptors. Scientific Reports, 2017, 7, 10765.	3.3	15
18	Serotonin 2A receptor disulfide bridge integrity is crucial for ligand binding to different signalling states but not for its homodimerization. European Journal of Pharmacology, 2017, 815, 138-146.	3 . 5	11

#	Article	IF	CITATIONS
19	Structureâ€Based Virtual Screening for Dopamine D ₂ Receptor Ligands as Potential Antipsychotics. ChemMedChem, 2016, 11, 718-729.	3.2	51
20	Rational design in search for 5-phenylhydantoin selective 5-HT7R antagonists. Molecular modeling, synthesis and biological evaluation. European Journal of Medicinal Chemistry, 2016, 112, 258-269.	5 . 5	21
21	8-Aminomethyl-7-hydroxy-4-methylcoumarins as Multitarget Leads for Alzheimer's Disease. ChemistrySelect, 2016, 1, 2742-2749.	1.5	5
22	Distinct phosphorylation sites on the ghrelin receptor, GHSR1a, establish a code that determines the functions of AŸ-arrestins. Scientific Reports, 2016, 6, 22495.	3.3	37
23	InÂvitro, molecular modeling and behavioral studies of 3-{[4-(5-methoxy-1H-indol-3-yl)-1,2,3,6-tetrahydropyridin-1-yl]methyl}-1,2-dihydroquinolin-2-one (D2AAK1) as a potential antipsychotic. Neurochemistry International, 2016, 96, 84-99.	3.8	35
24	Ligand Residence Time at G-protein–Coupled Receptors—Why We Should Take Our Time To Study It. Molecular Pharmacology, 2015, 88, 552-560.	2.3	66
25	G Protein–Coupled Receptor Multimers: A Question Still Open Despite the Use of Novel Approaches. Molecular Pharmacology, 2015, 88, 561-571.	2.3	64
26	Computer-Aided Structure-Based Design of Multitarget Leads for Alzheimer's Disease. Journal of Chemical Information and Modeling, 2015, 55, 135-148.	5.4	47
27	Novel insights on the structural determinants of clozapine and olanzapine multi-target binding profiles. European Journal of Medicinal Chemistry, 2014, 77, 91-95.	5. 5	21
28	Application of BRET for Studying G Protein-Coupled Receptors. Mini-Reviews in Medicinal Chemistry, 2014, 14, 411-425.	2.4	19
29	The arylpiperazine derivatives N â€(4â€cyanophenylmethyl)â€4â€(2â€diphenyl)â€1â€piperazinehexanamide and â€benzylâ€4â€(2â€diphenyl)â€1â€piperazinehexanamide exert a longâ€lasting inhibition of human serotonin 5†receptor binding and cAMP signaling. Pharmacology Research and Perspectives, 2013, 1, e00013.	N E 12 147	6
30	ETV5 cooperates with LPP as a sensor of extracellular signals and promotes EMT in endometrial carcinomas. Oncogene, 2012, 31, 4778-4788.	5.9	45
31	New chromene scaffolds for adenosine A2A receptors: Synthesis, pharmacology and structure–activity relationships. European Journal of Medicinal Chemistry, 2012, 54, 303-310.	5.5	33
32	On a Possible Neutral Charge State for the Catalytic Dyad in \hat{l}^2 -Secretase When Bound to Hydroxyethylene Transition State Analogue Inhibitors. Journal of Medicinal Chemistry, 2011, 54, 3081-3085.	6.4	13
33	Synthesis of novel chromene scaffolds for adenosine receptors. Organic and Biomolecular Chemistry, 2011, 9, 4242.	2.8	9
34	Identification of novel species-selective agonists of the G-protein-coupled receptor GPR35 that promote recruitment of \hat{l}^2 -arrestin-2 and activate $\hat{Gl}\pm 13$. Biochemical Journal, 2010, 432, 451-459.	3.7	91
35	Phe369(7.38) at human 5â€HT ₇ receptors confers interspecies selectivity to antagonists and partial agonists. British Journal of Pharmacology, 2010, 159, 1069-1081.	5.4	13
36	Evidence for Distinct Antagonist-Revealed Functional States of 5-Hydroxytryptamine _{2A} Receptor Homodimers. Molecular Pharmacology, 2009, 75, 1380-1391.	2.3	60

#	Article	IF	CITATIONS
37	Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nature Chemical Biology, 2009, 5, 734-742.		502
38	A new chemical tool (C0036E08) supports the role of adenosine A2B receptors in mediating human mast cell activation. Biochemical Pharmacology, 2008, 76, 912-921.	4.4	9
39	Extensive linkage disequilibrium mapping at HTR2A and DRD3 for schizophrenia susceptibility genes in the Galician population. Schizophrenia Research, 2007, 90, 123-129.	2.0	36
40	QF2004B, a potential antipsychotic butyrophenone derivative with similar pharmacological properties to clozapine. Neuropharmacology, 2006, 51, 251-262.	4.1	26
41	Parallel regulation by olanzapine of the patterns of expression of 5-HT2A and D3 receptors in rat central nervous system and blood cells. Neuropharmacology, 2006, 51, 923-932.	4.1	22
42	Turn-on switch in parathyroid hormone receptor by a two-step parathyroid hormone binding mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16084-16089.	7.1	168
43	Human breast cancer cell line MDA-MB-231 expresses endogenous A2B adenosine receptors mediating a Ca2+ signal. British Journal of Pharmacology, 2005, 145, 211-218.	5.4	65
44	Measurement of the millisecond activation switch of G protein–coupled receptors in living cells. Nature Biotechnology, 2003, 21, 807-812.	17.5	400
45	Dual Regulation of the Parathyroid Hormone (PTH)/PTH-Related Peptide Receptor Signaling by Protein Kinase C and \hat{I}^2 -Arrestins. Endocrinology, 2002, 143, 3854-3865.	2.8	43
46	Different Architectures in the Assembly of Infectious Bursal Disease Virus Capsid Proteins Expressed in Insect Cells. Virology, 2000, 278, 322-331.	2.4	36
47	Influence of Gz and Gi2 transducer proteins in the affinity of opioid agonists to μ receptors. European Journal of Neuroscience, 1998, 10, 2557-2564.	2.6	37
48	Influence of Gz and Gi2 transducer proteins in the affinity of opioid agonists to mu receptors. European Journal of Neuroscience, 1998, 10, 2557-2564.	2.6	2
49	Antibodies raised against the N-terminal sequence of δopioid receptors blocjed δ-mediated supraspinal antinociception in mice. Life Sciences, 1994, 54, PL191-PL196.	4.3	7
50	GX/Z and Gi2 transducer proteins on $\hat{l}^{1}/4\hat{l}$ opioid-mediated supraspinal antinociception. Life Sciences, 1993, 53, PL381-PL386.	4.3	19
51	Knowledge-Based Design of Long-Chain Arylpiperazine Derivatives Targeting Multiple Serotonin Receptors as Potential Candidates for Treatment of Autism Spectrum Disorder. , 0, , .		O