Webster L Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4660905/publications.pdf

Version: 2024-02-01

136885 149623 3,701 105 32 56 citations h-index g-index papers 118 118 118 3779 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ligand-free copper-catalyzed borylative defluorination: access to <i>gem</i> difluoroallyl boronic acid derivatives. Organic and Biomolecular Chemistry, 2022, 20, 366-374.	1.5	4
2	Regio- and stereoselective copper-catalyzed $\hat{l}\pm,\hat{l}^2$ -protoboration of allenoates: access to $\langle i \rangle -\hat{l}^2,\hat{l}^3$ -unsaturated \hat{l}^2 -boryl esters. Organic and Biomolecular Chemistry, 2022, 20, 3287-3291.	1.5	2
3	Phosphine-catalyzed hydroboration of propiolonitriles: access to (<i>E</i>)-1,2-vinylcyanotrifluoroborate derivatives. Chemical Communications, 2022, 58, 5984-5987.	2.2	11
4	A Novel Sphingosine Kinase Inhibitor Suppresses Chikungunya Virus Infection. Viruses, 2022, 14, 1123.	1.5	1
5	Discovery of In Vivo Active Sphingosine-1-phosphate Transporter (Spns2) Inhibitors. Journal of Medicinal Chemistry, 2022, 65, 7656-7681.	2.9	10
6	Sphingosine Kinase 2 Inhibitors: Rigid Aliphatic Tail Derivatives Deliver Potent and Selective Analogues. ACS Bio & Med Chem Au, 2022, 2, 469-489.	1.7	1
7	Copper(<scp>ii</scp>)-catalyzed protoboration of allenes in aqueous media and open air. New Journal of Chemistry, 2021, 45, 14925-14931.	1.4	3
8	Copperâ€Catalyzed Synthesis of αâ€Trifluoromethylacrylates from Trifluoroborylacrylates via Stereoretentive Radical Trifluoromethylation. Advanced Synthesis and Catalysis, 2021, 363, 425-430.	2.1	4
9	Extrachromosomal DNA amplicons in antimalarialâ€resistant Plasmodium falciparum. Molecular Microbiology, 2021, 115, 574-590.	1.2	6
10	Lipophilic tail modifications of 2-(hydroxymethyl)pyrrolidine scaffold reveal dual sphingosine kinase 1 and 2 inhibitors. Bioorganic and Medicinal Chemistry, 2021, 30, 115941.	1.4	9
11	Probing the substitution pattern of indole-based scaffold reveals potent and selective sphingosine kinase 2 inhibitors. European Journal of Medicinal Chemistry, 2021, 212, 113121.	2.6	4
12	Mitochondrial uncoupler SHC517 reverses obesity in mice without affecting food intake. Metabolism: Clinical and Experimental, 2021, 117, 154724.	1.5	11
13	First-Row d-Block Element-Catalyzed Carbon–Boron Bond Formation and Related Processes. Chemical Reviews, 2021, 121, 13238-13341.	23.0	163
14	Metabolic Adaptation of Airway Smooth Muscle Cells to an SPHK2 Substrate Precedes Cytostasis. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 35-42.	1.4	7
15	Discovery of a Small Side Cavity in Sphingosine Kinase 2 that Enhances Inhibitor Potency and Selectivity. Journal of Medicinal Chemistry, 2020, 63, 1178-1198.	2.9	15
16	Phenotypic screen for oxygen consumption rate identifies an anti-cancer naphthoquinone that induces mitochondrial oxidative stress. Redox Biology, 2020, 28, 101374.	3.9	9
17	[1,2,5]Oxadiazolo[3,4- <i>b</i>)pyrazine-5,6-diamine Derivatives as Mitochondrial Uncouplers for the Potential Treatment of Nonalcoholic Steatohepatitis. Journal of Medicinal Chemistry, 2020, 63, 2511-2526.	2.9	26
18	Diboration of 3-substituted propargylic alcohols using a bimetallic catalyst system: access to (Z)-allyl, vinyldiboronates. Chemical Communications, 2020, 56, 10313-10316.	2.2	9

#	Article	IF	Citations
19	Catalytic, Transition-Metal-Free Semireduction of Propiolamide Derivatives: Scope and Mechanistic Investigation. Organic Letters, 2020, 22, 7013-7018.	2.4	8
20	Organocatalytic trans Phosphinoboration of Internal Alkynes. Angewandte Chemie, 2020, 132, 14464-14468.	1.6	3
21	6-Amino[1,2,5]oxadiazolo[3,4- <i>b</i>)pyrazin-5-ol Derivatives as Efficacious Mitochondrial Uncouplers in STAM Mouse Model of Nonalcoholic Steatohepatitis. Journal of Medicinal Chemistry, 2020, 63, 6203-6224.	2.9	13
22	Organocatalytic <i>trans</i> Phosphinoboration of Internal Alkynes. Angewandte Chemie - International Edition, 2020, 59, 14358-14362.	7.2	25
23	Mitochondrial uncoupler BAM15 reverses diet-induced obesity and insulin resistance in mice. Nature Communications, 2020, 11, 2397.	5.8	74
24	Regio―and Stereoselective Synthesis of 1,1â€Diborylalkenes via BrÃ,nsted Base atalyzed Mixed Diboration of Alkynyl Esters and Amides with BpinBdan. European Journal of Organic Chemistry, 2020, 2020, 1941-1946.	1.2	26
25	Anilinopyrazines as potential mitochondrial uncouplers. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127057.	1.0	4
26	Mechanism of sphingosine 1-phosphate clearance from blood. Biochemical Journal, 2020, 477, 925-935.	1.7	23
27	<i>trans</i> -Hydroboration of Propiolamides: Access to Primary and Secondary (<i>E</i>)-β-Borylacrylamides. Organic Letters, 2019, 21, 6795-6799.	2.4	29
28	Regioselective Diboron-Mediated Semireduction of Terminal Allenes. Synthesis, 2019, 51, 4619-4624.	1.2	4
29	Route to Air and Moisture Stable β-Difluoroboryl Acrylamides. Organic Letters, 2019, 21, 8053-8057.	2.4	5
30	Multi-photon patterning of photoactive o-nitrobenzyl ligands bound to gold surfaces. Photochemical and Photobiological Sciences, 2019, 18, 30-44.	1.6	3
31	Molecular recognition of HIV-1 RNAs with branched peptides. Methods in Enzymology, 2019, 623, 373-400.	0.4	1
32	Molecular recognition of a branched peptide with HIV-1 Rev Response Element (RRE) RNA. Bioorganic and Medicinal Chemistry, 2019, 27, 1759-1765.	1.4	10
33	<i>In Silico</i> Characterization of Structural Distinctions between Isoforms of Human and Mouse Sphingosine Kinases for Accelerating Drug Discovery. Journal of Chemical Information and Modeling, 2019, 59, 2339-2351.	2.5	10
34	Semireduction of alkynoic acids via a transition metal-free \hat{l}_{\pm} borylation-protodeborylation sequence. Tetrahedron, 2019, 75, 2113-2117.	1.0	5
35	The role of the gap junction perinexus in cardiac conduction: Potential as a novel anti-arrhythmic drug target. Progress in Biophysics and Molecular Biology, 2019, 144, 41-50.	1.4	26
36	Small Molecule Mitochondrial Uncouplers and Their Therapeutic Potential. Journal of Medicinal Chemistry, 2018, 61, 4641-4655.	2.9	103

#	Article	IF	Citations
37	Photoacoustic microscopy reveals the hemodynamic basis of sphingosine 1-phosphate-induced neuroprotection against ischemic stroke. Theranostics, 2018, 8, 6111-6120.	4.6	34
38	Discovery of a Branched Peptide That Recognizes the Rev Response Element (RRE) RNA and Blocks HIV-1 Replication. Journal of Medicinal Chemistry, 2018, 61, 9611-9620.	2.9	16
39	Saccharomyces cerevisiae as a platform for assessing sphingolipid lipid kinase inhibitors. PLoS ONE, 2018, 13, e0192179.	1.1	6
40	Copper-boryl mediated organic synthesis. Chemical Society Reviews, 2018, 47, 7477-7494.	18.7	243
41	Transition Metal-Free <i>Trans</i> Hydroboration of Alkynoic Acid Derivatives: Experimental and Theoretical Studies. Journal of Organic Chemistry, 2018, 83, 10436-10444.	1.7	54
42	Transforming Sphingosine Kinase 1 Inhibitors into Dual and Sphingosine Kinase 2 Selective Inhibitors: Design, Synthesis, and in Vivo Activity. Journal of Medicinal Chemistry, 2017, 60, 3933-3957.	2.9	36
43	Plasmon-Induced Photoreaction of <i>>o</i> >Nitrobenzyl-Based Ligands under 550 nm Light. Journal of Physical Chemistry C, 2017, 121, 13114-13124.	1.5	8
44	Substrateâ€Assisted, Transitionâ€Metalâ€Free Diboration of Alkynamides with Mixed Diboron: Regio―and Stereoselective Access to <i>trans</i> àâ€1,2â€Vinyldiboronates. Angewandte Chemie - International Edition, 2017, 56, 5111-5115.	7.2	61
45	BrÃ,nsted Baseâ€Mediated Regio―and Stereoselective <i>transâ€</i> Silaboration of Propargylamides: Access to 1,2â€Vinylborasilanes. Chemistry - A European Journal, 2017, 23, 15534-15537.	1.7	35
46	Light-Directed Patchy Particle Fabrication and Assembly from Isotropic Silver Nanoparticles. Langmuir, 2017, 33, 10927-10935.	1.6	5
47	Branched Peptides: Acridine and Boronic Acid Derivatives as Antimicrobial Agents. ACS Medicinal Chemistry Letters, 2017, 8, 820-823.	1.3	18
48	Substrateâ€Assisted, Transitionâ€Metalâ€Free Diboration of Alkynamides with Mixed Diboron: Regio†and Stereoselective Access to trans â€1,2â€Vinyldiboronates. Angewandte Chemie, 2017, 129, 5193-5197.	1.6	14
49	Mobilization studies in mice deficient in sphingosine kinase 2 support a crucial role of the plasma level of sphingosine-1-phosphate in the egress of hematopoietic stem progenitor cells. Oncotarget, 2017, 8, 65588-65600.	0.8	15
50	Copper-Catalyzed Coupling Reactions of Organoboron Compounds. ACS Symposium Series, 2016, , 313-356.	0.5	10
51	Characterization and in vitro activity of a branched peptide boronic acid that interacts with HIV-1 RRE RNA. Bioorganic and Medicinal Chemistry, 2016, 24, 3947-3952.	1.4	12
52	Regio- and Stereoselective Copper(II)-Catalyzed Hydrosilylation of Activated Allenes in Water: Access to Vinylsilanes. Organic Letters, 2016, 18, 2443-2446.	2.4	32
53	Chemo-, Regio-, and Stereoselective Copper(II)-Catalyzed Boron Addition to Acetylenic Esters and Amides in Aqueous Media. Journal of Organic Chemistry, 2016, 81, 4269-4279.	1.7	34
54	Sphingosine kinase inhibitors: a review of patent literature (2006-2015). Expert Opinion on Therapeutic Patents, 2016, 26, 1409-1416.	2.4	24

#	Article	IF	Citations
55	Discovery and antiparasitic activity of AZ960 as a Trypanosoma brucei ERK8 inhibitor. Bioorganic and Medicinal Chemistry, 2016, 24, 4647-4651.	1.4	13
56	Effect of intercalator and Lewis acid–base branched peptide complex formation: boosting affinity towards HIV-1 RRE RNA. MedChemComm, 2016, 7, 1436-1440.	3.5	8
57	Structure–Activity Relationship Studies and Molecular Modeling of Naphthalene-Based Sphingosine Kinase 2 Inhibitors. ACS Medicinal Chemistry Letters, 2016, 7, 229-234.	1.3	21
58	The impact of sphingosine kinase inhibitor-loaded nanoparticles on bioelectrical and biomechanical properties of cancer cells. Lab on A Chip, 2016, 16, 188-198.	3.1	22
59	Structure–activity relationships of furazano[3,4- b]pyrazines as mitochondrial uncouplers. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4858-4861.	1.0	19
60	Structureâ ⁻ 'Activity Relationship Studies and in Vivo Activity of Guanidine-Based Sphingosine Kinase Inhibitors: Discovery of SphK1- and SphK2-Selective Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 1879-1899.	2.9	67
61	Regio- and Chemoselective Diboration of Allenes with Unsymmetrical Diboron: Formation of Vinyl and Allyl Boronic Acid Derivatives. ACS Catalysis, 2015, 5, 2172-2176.	5. 5	46
62	HIV-1 drug discovery: targeting folded RNA structures with branched peptides. Organic and Biomolecular Chemistry, 2015, 13, 5848-5858.	1.5	16
63	Structure–activity relationship studies of the lipophilic tail region of sphingosine kinase 2 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4956-4960.	1.0	16
64	Copper(II)-Catalyzed Î ² -Borylation of Acetylenic Esters in Water. Synthesis, 2015, 47, 2242-2248.	1.2	32
65	Sphingosine Kinase 2 Inhibition and Blood Sphingosine 1-Phosphate Levels. Journal of Pharmacology and Experimental Therapeutics, 2015, 355, 23-31.	1.3	59
66	Drugging Sphingosine Kinases. ACS Chemical Biology, 2015, 10, 225-233.	1.6	87
67	Fluorescence lifetime based characterization of active and tunable plasmonic nanostructures. Optics Express, 2014, 22, 20720.	1.7	2
68	Impact of lithography on the fluorescence dynamics of self-assembled fluorophores. Optics Express, 2014, 22, 12935.	1.7	1
69	Cationic polythiophenes as responsive DNA-binding polymers. Polymer Chemistry, 2014, 5, 314-317.	1.9	32
70	Copper(II)â€Catalyzed Silylation of Activated Alkynes in Water: Diastereodivergent Access to <i>E</i> àê•or <i>Z</i> â€Î²â€Silylâ€Î±,βâ€Unsaturated Carbonyl and Carboxyl Compounds. Angewandte Chemie - International Edition, 2014, 53, 4154-4158.	7.2	63
71	Identification of a novel mitochondrial uncoupler that does not depolarize the plasma membrane. Molecular Metabolism, 2014, 3, 114-123.	3.0	168
72	Lipid phosphate phosphatase-1 expression in cancer cells attenuates tumor growth and metastasis in mice. Journal of Lipid Research, 2014, 55, 2389-2400.	2.0	39

#	Article	IF	CITATIONS
73	Two-photon activation of <i>o</i> -nitrobenzyl ligands bound to gold surfaces. Proceedings of SPIE, 2014, , .	0.8	5
74	High Photoreactivity of <i>>o</i> -Nitrobenzyl Ligands on Gold. Journal of Physical Chemistry C, 2013, 14165-14175.	1.5	9
75	Targeting folded RNA: a branched peptideboronic acid that binds to a large surface area of HIV-1 RRE RNA. Organic and Biomolecular Chemistry, 2013, 11, 6263-6271.	1.5	16
76	Branched peptideboronic acids (BPBAs): a novel mode of binding towards RNA. Chemical Communications, 2013, 49, 2436-2438.	2.2	28
77	Sphingosine kinase typeÂ2 inhibition elevates circulating sphingosine 1-phosphate. Biochemical Journal, 2012, 447, 149-157.	1.7	84
78	Effect of alkyl chain length on sphingosine kinase 2 selectivity. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 6817-6820.	1.0	17
79	Site-specific incorporation of diamondoids on DNA using click chemistry. Chemical Communications, 2012, 48, 2018.	2.2	13
80	Copper(II)-Catalyzed Silyl Conjugate Addition to α,β-Unsaturated Conjugated Compounds: BrÃ,nsted Base-Assisted Activation of Si–B Bond in Water. Organic Letters, 2012, 14, 2090-2093.	2.4	57
81	Toward Targeting RNA Structure: Branched Peptides as Cell-Permeable Ligands to TAR RNA. ACS Chemical Biology, 2012, 7, 210-217.	1.6	42
82	Mapping Targetable Sites on Human Telomerase RNA Pseudoknot/Template Domain Using 2′-OMe RNA-interacting Polynucleotide (RIPtide) Microarrays. Journal of Biological Chemistry, 2012, 287, 18843-18853.	1.6	12
83	Unexpected Copper(II) Catalysis: Catalytic Amine Base Promoted \hat{l}^2 -Borylation of \hat{l}_{\pm} , \hat{l}^2 -Unsaturated Carbonyl Compounds in Water. Organic Letters, 2012, 14, 1918-1921.	2.4	77
84	Design, synthesis and biological activity of sphingosine kinase 2 selective inhibitors. Bioorganic and Medicinal Chemistry, 2012, 20, 183-194.	1.4	35
85	Facile Analysis and Sequencing of Linear and Branched Peptide Boronic Acids by MALDI Mass Spectrometry. Analytical Chemistry, 2011, 83, 3548-3554.	3.2	19
86	Structure and Reactivity of a Preactivated sp ² â€"sp ³ Diboron Reagent: Catalytic Regioselective Boration of α,β-Unsaturated Conjugated Compounds. Journal of Organic Chemistry, 2011, 76, 3997-4007.	1.7	122
87	Regio- and stereoselective copper-catalyzed \hat{l}^2 -borylation of allenoates by a preactivated diboron. Chemical Communications, 2011, 47, 424-426.	2.2	109
88	A Method for the Deprotection of Alkylpinacolyl Boronate Esters. Journal of Organic Chemistry, 2011, 76, 3571-3575.	1.7	52
89	N-Terminal peptidic boronic acids selectively inhibit human ClpXP. Organic and Biomolecular Chemistry, 2010, 8, 3451.	1.5	30
90	sp ² â^'sp ³ Hybridized Mixed Diboron: Synthesis, Characterization, and Copper-Catalyzed \hat{l}^2 -Boration of \hat{l}^{\pm} , \hat{l}^2 -Unsaturated Conjugated Compounds. Organic Letters, 2009, 11, 3478-3481.	2.4	140

#	Article	IF	CITATIONS
91	Screening of a branched peptide library with HIV-1 TAR RNA. Molecular BioSystems, 2009, 5, 1070.	2.9	25
92	The Human Cytomegalovirus UL44 C Clamp Wraps around DNA. Structure, 2008, 16, 1214-1225.	1.6	31
93	The Positively Charged Surface of Herpes Simplex Virus UL42 Mediates DNA Binding. Journal of Biological Chemistry, 2008, 283, 6154-6161.	1.6	36
94	Subunit-specific Protein Footprinting Reveals Significant Structural Rearrangements and a Role for N-terminal Lys-14 of HIV-1 Integrase during Viral DNA Binding. Journal of Biological Chemistry, 2008, 283, 5632-5641.	1.6	52
95	Integration Requires a Specific Interaction of the Donor DNA Terminal 5′-Cytosine with Glutamine 148 of the HIV-1 Integrase Flexible Loop. Journal of Biological Chemistry, 2006, 281, 461-467.	1.6	69
96	Structure of a DNA Glycosylase Searching for Lesions. Science, 2006, 311, 1153-1157.	6.0	180
97	Synthesis and biological evaluation of phosphonic and thiophosphoric acid derivatives of lysophosphatidic acid. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 3473-3476.	1.0	29
98	Interaction between Human Serum Albumin and the Felbamate Metabolites 4-Hydroxy-5-phenyl-[1,3]oxazinan-2-one and 2-Phenylpropenal. Chemical Research in Toxicology, 2002, 15, 815-824.	1.7	24
99	Reactivity of atropaldehyde, a felbamate metabolite in human liver tissue in vitro. Chemico-Biological Interactions, 2002, 142, 119-134.	1.7	43
100	Role of Glutathione S-Transferases A1-1, M1-1, and P1-1 in the Detoxification of 2-Phenylpropenal, a Reactive Felbamate Metabolite. Chemical Research in Toxicology, 2001, 14, 511-516.	1.7	31
101	The Chemistry, Toxicology, and Identification in Rat and Human Urine of 4-Hydroxy-5-phenyl-1,3-oxazaperhydroin-2-one:  A Reactive Metabolite in Felbamate Bioactivation. Chemical Research in Toxicology, 2001, 14, 958-964.	1.7	29
102	Activity of 2-Substituted Lysophosphatidic Acid (LPA) Analogs at LPA Receptors: Discovery of a LPA ₁ /LPA ₃ Receptor Antagonist. Molecular Pharmacology, 2001, 60, 1173-1180.	1.0	95
103	Lysophosphatidic Acid-induced Mitogenesis Is Regulated by Lipid Phosphate Phosphatases and Is Edg-receptor Independent. Journal of Biological Chemistry, 2001, 276, 4611-4621.	1.6	121
104	The Molecular Pharmacology of Lysophosphatidate Signaling. Annals of the New York Academy of Sciences, 2000, 905, 232-241.	1.8	9
105	Organocatalytic trans Semireduction of Primary and Secondary Propiolamides: Substrate Scope and Mechanistic Studies. Advanced Synthesis and Catalysis, 0, , .	2.1	5