
Yinbo Gan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/466085/publications.pdf Version: 2024-02-01

YINBO GAN

#	Article	IF	CITATIONS
1	Seed priming with zinc oxide nanoparticles downplayed ultrastructural damage and improved photosynthetic apparatus in maize under cobalt stress. Journal of Hazardous Materials, 2022, 423, 127021.	12.4	122
2	Exploring the Adaptive Responses of Plants to Abiotic Stresses Using Transcriptome Data. Agriculture (Switzerland), 2022, 12, 211.	3.1	22
3	C2H2 Zinc Finger Proteins Response to Abiotic Stress in Plants. International Journal of Molecular Sciences, 2022, 23, 2730.	4.1	41
4	Dichromate-induced ethylene biosynthesis, perception, and signaling regulate the variance in root growth inhibition among Shaheen basmati and basmati-385 rice varieties. Environmental Science and Pollution Research, 2021, 28, 38016-38025.	5.3	5
5	BnaA02.NIP6;1a encodes a boron transporter required for plant development under boron deficiency in Brassica napus. Plant Physiology and Biochemistry, 2021, 161, 36-45.	5.8	8
6	A rice transcription factor, <scp><i>OsMADS57</i></scp> , positively regulates high salinity tolerance in transgenic <scp><i>Arabidopsis thaliana</i></scp> and <scp><i>Oryza sativa</i></scp> plants. Physiologia Plantarum, 2021, 173, 1120-1135.	5.2	20
7	RNA-Seq-Based Profiling of pl Mutant Reveals Transcriptional Regulation of Anthocyanin Biosynthesis in Rice (Oryza sativa L.). International Journal of Molecular Sciences, 2021, 22, 9787.	4.1	4
8	Ethylene participates in zinc oxide nanoparticles induced biochemical, molecular and ultrastructural changes in rice seedlings. Ecotoxicology and Environmental Safety, 2021, 226, 112844.	6.0	27
9	Overexpression of MADS-box transcription factor OsMADS25 enhances salt stress tolerance in Rice and Arabidopsis. Plant Growth Regulation, 2020, 90, 163-171.	3.4	21
10	Ethylene mediates CuO NP-induced ultrastructural changes and oxidative stress in Arabidopsis thaliana leaves. Environmental Science: Nano, 2020, 7, 938-953.	4.3	24
11	Nitrate regulation of lateral root and root hair development in plants. Journal of Experimental Botany, 2020, 71, 4405-4414.	4.8	45
12	Zinc finger protein 5 (ZFP5) associates with ethylene signaling to regulate the phosphate and potassium deficiency-induced root hair development in Arabidopsis. Plant Molecular Biology, 2020, 102, 143-158.	3.9	39
13	Zinc Finger Protein 1 (ZFP1) Is Involved in Trichome Initiation in Arabidopsis thaliana. Agriculture (Switzerland), 2020, 10, 645.	3.1	9
14	The WRKY6 transcription factor affects seed oil accumulation and alters fatty acid compositions in <i>Arabidopsis thaliana</i> . Physiologia Plantarum, 2020, 169, 612-624.	5.2	35
15	Chromium-Induced Reactive Oxygen Species Accumulation by Altering the Enzymatic Antioxidant System and Associated Cytotoxic, Genotoxic, Ultrastructural, and Photosynthetic Changes in Plants. International Journal of Molecular Sciences, 2020, 21, 728.	4.1	157
16	The new insight of auxin functions: transition from seed dormancy to germination and floral opening in plants. Plant Growth Regulation, 2020, 91, 169-174.	3.4	25
17	Involvement of ethylene signaling in zinc oxide nanoparticle-mediated biochemical changes in <i>Arabidopsis thaliana</i> leaves. Environmental Science: Nano, 2019, 6, 341-355.	4.3	50
18	Ethylene mediates dichromate-induced oxidative stress and regulation of the enzymatic antioxidant system-related transcriptome in Arabidopsis thaliana. Environmental and Experimental Botany, 2019, 161, 166-179.	4.2	50

Yinbo Gan

#	Article	IF	CITATIONS
19	Ethylene mediates dichromateâ€induced inhibition of primary root growth by altering <i>AUX1</i> expression and auxin accumulation in <scp><i>Arabidopsis thaliana</i></scp> . Plant, Cell and Environment, 2018, 41, 1453-1467.	5.7	46
20	PIL5 represses floral transition in Arabidopsis under long day conditions. Biochemical and Biophysical Research Communications, 2018, 499, 513-518.	2.1	11
21	Involvement of histone acetylation and deacetylation in regulating auxin responses and associated phenotypic changes in plants. Plant Cell Reports, 2018, 37, 51-59.	5.6	14
22	NbGIS regulates glandular trichome initiation through GA signaling in tobacco. Plant Molecular Biology, 2018, 98, 153-167.	3.9	29
23	SPATULA regulates floral transition and photomorphogenesis in a PHYTOCHROME B-dependent manner in Arabidopsis. Biochemical and Biophysical Research Communications, 2018, 503, 2380-2385.	2.1	5
24	A model for the ethylene-mediated auxin distribution under Cr(VI) stress in Arabidopsis thaliana. Plant Signaling and Behavior, 2018, 13, 1-2.	2.4	1
25	OsFTIP7 determines auxin-mediated anther dehiscence in rice. Nature Plants, 2018, 4, 495-504.	9.3	63
26	The SPATULA transcription factor regulates seed oil content by controlling seed specific genes in Arabidopsis thaliana. Plant Growth Regulation, 2017, 82, 111-121.	3.4	14
27	OsFTIP1-Mediated Regulation of Florigen Transport in Rice Is Negatively Regulated by the Ubiquitin-Like Domain Kinase OsUbDKγ4. Plant Cell, 2017, 29, 491-507.	6.6	55
28	Biochemical responses and ultrastructural changes in ethylene insensitive mutants of Arabidopsis thialiana subjected to bisphenol A exposure. Ecotoxicology and Environmental Safety, 2017, 144, 62-71.	6.0	39
29	AtGIS, a C2H2 zinc-finger transcription factor from Arabidopsis regulates glandular trichome development through GA signaling in tobacco. Biochemical and Biophysical Research Communications, 2017, 483, 209-215.	2.1	40
30	Multiple phytohormones promote root hair elongation by regulating a similar set of genes in the root epidermis in Arabidopsis. Journal of Experimental Botany, 2016, 67, 6363-6372.	4.8	78
31	Toxicological effects of bisphenol A on growth and antioxidant defense system in Oryza sativa as revealed by ultrastructure analysis. Ecotoxicology and Environmental Safety, 2016, 124, 277-284.	6.0	62
32	Linkage Mapping of Stem Saccharification Digestibility in Rice. PLoS ONE, 2016, 11, e0159117.	2.5	6
33	The Arabidopsis Gene zinc finger protein 3(ZFP3) Is Involved in Salt Stress and Osmotic Stress Response. PLoS ONE, 2016, 11, e0168367.	2.5	53
34	<i><scp>GLABROUS INFLORESCENCE STEMS</scp>3</i> (<i><scp>GIS</scp>3</i>) regulates trichome initiation and development in <i>Arabidopsis</i> . New Phytologist, 2015, 206, 220-230.	7.3	90
35	MADS-box Transcription Factor OsMADS25 Regulates Root Development through Affection of Nitrate Accumulation in Rice. PLoS ONE, 2015, 10, e0135196.	2.5	81
36	AtEXP2 Is Involved in Seed Germination and Abiotic Stress Response in Arabidopsis. PLoS ONE, 2014, 9, e85208.	2.5	93

Yinbo Gan

#	Article	IF	CITATIONS
37	The Effects of Fluctuations in the Nutrient Supply on the Expression of Five Members of the AGL17 Clade of MADS-Box Genes in Rice. PLoS ONE, 2014, 9, e105597.	2.5	30
38	Involvement of C2H2 zinc finger proteins in the regulation of epidermal cell fate determination in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2014, 56, 1112-1117.	8.5	39
39	<i><scp>Z</scp>inc <scp>F</scp>inger <scp>P</scp>rotein 6</i> (<i><scp>ZFP</scp>6</i>) regulates trichome initiation by integrating gibberellin and cytokinin signaling in <i><scp>A</scp>rabidopsis thaliana</i> . New Phytologist, 2013, 198, 699-708.	7.3	144
40	Differential control of seed primary dormancy in <i>Arabidopsis</i> ecotypes by the transcription factor SPATULA. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10866-10871.	7.1	106
41	<i>ZFP5</i> encodes a functionally equivalent <i>GIS</i> protein to control trichome initiation. Plant Signaling and Behavior, 2012, 7, 28-30.	2.4	32
42	GLABROUS INFLORESCENCE STEMS (GIS) is Required for Trichome Branching Through Gibberellic Acid Signaling in Arabidopsis. Plant and Cell Physiology, 2012, 53, 457-469.	3.1	45
43	Overexpressing the ANR1 MADS-Box Gene in Transgenic Plants Provides New Insights into its Role in the Nitrate Regulation of Root Development. Plant and Cell Physiology, 2012, 53, 1003-1016.	3.1	103
44	A zinc finger protein gene <i>ZFP5</i> integrates phytohormone signaling to control root hair development in Arabidopsis. Plant Journal, 2012, 72, 474-490.	5.7	79
45	The responses of trichome mutants to enhanced ultraviolet-B radiation in Arabidopsis thaliana. Journal of Photochemistry and Photobiology B: Biology, 2012, 113, 29-35.	3.8	83
46	<i>Zinc Finger Protein5</i> Is Required for the Control of Trichome Initiation by Acting Upstream of <i>Zinc Finger Protein8</i> in Arabidopsis Â. Plant Physiology, 2011, 157, 673-682.	4.8	106
47	Expression patterns of nitrate, phosphate, and sulfate transporters in <i>Arabidopsis</i> roots exposed to different nutritional regimes. Botany, 2011, 89, 647-653.	1.0	30
48	Progress on trichome development regulated by phytohormone signaling. Plant Signaling and Behavior, 2011, 6, 1959-1962.	2.4	41
49	A DELLA in Disguise: SPATULA Restrains the Growth of the Developing <i>Arabidopsis</i> Seedling Â. Plant Cell, 2011, 23, 1337-1351.	6.6	77
50	SPATULA Links Daytime Temperature and Plant Growth Rate. Current Biology, 2010, 20, 1493-1497.	3.9	47
51	The effects of fluctuations in the nutrient supply on the expression of <i>ANR1</i> and 11 other MADS box genes in shoots and roots of <i>Arabidopsis thaliana</i> . Botany, 2010, 88, 1023-1031.	1.0	16
52	Genetic and Molecular Regulation by DELLA Proteins of Trichome Development in Arabidopsis. Plant Physiology, 2007, 145, 1031-1042.	4.8	35
53	Integration of cytokinin and gibberellin signalling by Arabidopsis transcription factors GIS, ZFP8 and GIS2 in the regulation of epidermal cell fate. Development (Cambridge), 2007, 134, 2073-2081.	2.5	178
54	GLABROUS INFLORESCENCE STEMS Modulates the Regulation by Gibberellins of Epidermal Differentiation and Shoot Maturation in Arabidopsis. Plant Cell, 2006, 18, 1383-1395.	6.6	134

#	Article	IF	CITATIONS
55	Nutritional regulation of ANR1 and other root-expressed MADS-box genes in Arabidopsis thaliana. Planta, 2005, 222, 730-742.	3.2	148