Thomas Vogt

List of Publications by Citations

Source: https://exaly.com/author-pdf/4660621/thomas-vogt-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 307
 14,399
 56
 109

 papers
 citations
 h-index
 g-index

 348
 15,298
 5.7
 6.08

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
307	Optical response of high-dielectric-constant perovskite-related oxide. <i>Science</i> , 2001 , 293, 673-6	33.3	1436
306	Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8. <i>Science</i> , 1996 , 272, 90-92	33.3	1168
305	Giant dielectric constant response in a copper-titanate. Solid State Communications, 2000, 115, 217-220	1.6	941
304	Negative Thermal Expansion in ZrW2O8 and HfW2O8. <i>Chemistry of Materials</i> , 1996 , 8, 2809-2823	9.6	463
303	Structure of V(2)O(5)*nH(2)O xerogel solved by the atomic pair distribution function technique. <i>Journal of the American Chemical Society</i> , 2002 , 124, 10157-62	16.4	358
302	Low to high spin-state transition induced by charge ordering in antiferromagnetic YBaCo2O5. <i>Physical Review Letters</i> , 2000 , 84, 2969-72	7:4	225
301	Influence of Cation Size on the Structural Features of Ln1/2A1/2MnO3 Perovskites at Room Temperature. <i>Chemistry of Materials</i> , 1998 , 10, 3652-3665	9.6	220
300	Chiral three-dimensional microporous nickel aspartate with extended Ni-O-Ni bonding. <i>Journal of the American Chemical Society</i> , 2006 , 128, 9957-62	16.4	203
299	Direct determination of proton positions in D-Y and H-Y zeolite samples by neutron powder diffraction. <i>The Journal of Physical Chemistry</i> , 1992 , 96, 1535-1540		189
298	The High-Temperature Phases of WO3. Journal of Solid State Chemistry, 1999, 144, 209-215	3.3	183
297	Structure refinement of triclinic tungsten trioxide. <i>Journal of Physics and Chemistry of Solids</i> , 1995 , 56, 1305-1315	3.9	183
296	Structural aspects of the M1 and M2 phases in MoVNbTeO propane ammoxidation catalysts. <i>Zeitschrift Fur Kristallographie - Crystalline Materials</i> , 2004 , 219,	1	167
295	Pressure-induced intermediate-to-low spin state transition in LaCoO3. <i>Physical Review B</i> , 2003 , 67,	3.3	166
294	Magnetic phase transitions of MnWO4 studied by the use of neutron diffraction. <i>Physical Review B</i> , 1993 , 48, 6087-6098	3.3	166
293	Ferroelectric Tungsten Trioxide. <i>Journal of Solid State Chemistry</i> , 1997 , 131, 9-17	3.3	164
292	Structural Characterization of the Orthorhombic Phase M1 in MoVNbTeO Propane Ammoxidation Catalyst. <i>Topics in Catalysis</i> , 2003 , 23, 23-38	2.3	164
291	Pressure-induced volume expansion of zeolites in the natrolite family. <i>Journal of the American Chemical Society</i> , 2002 , 124, 5466-75	16.4	158

(1996-2003)

29 0	Charge transfer in the high dielectric constant materials CaCu3Ti4O12 and CdCu3Ti4O12. <i>Physical Review B</i> , 2003 , 67,	3.3	157	
289	Structure of nanocrystalline materials using atomic pair distribution function analysis: Study of LiMoS2. <i>Physical Review B</i> , 2002 , 65,	3.3	139	
288	Non-framework cation migration and irreversible pressure-induced hydration in a zeolite. <i>Nature</i> , 2002 , 420, 485-9	50.4	130	
287	Effect of Compositional Fluctuations on the Phase Transitions in (Nd1/2Sr1/2)MnO3. <i>Chemistry of Materials</i> , 1999 , 11, 3528-3538	9.6	122	
286	The correlation between composition and electrochemical properties of metal hydride electrodes. <i>Journal of Alloys and Compounds</i> , 1999 , 293-295, 569-582	5.7	115	
285	Compressibility and electronic structure of MgB2 up to 8 GPa. <i>Physical Review B</i> , 2001 , 63,	3.3	112	
284	A highly crystalline layered silicate with three-dimensionally microporous layers. <i>Nature Materials</i> , 2003 , 2, 53-8	27	106	
283	Kondo insulator description of spin state transition in FeSb2. <i>Physical Review B</i> , 2005 , 72,	3.3	105	
282	Structural changes and related effects due to charge ordering in Nd0.5Ca0.5MnO3. <i>Physical Review B</i> , 1996 , 54, 15303-15306	3.3	96	
281	Synchrotron X-ray powder diffraction and computational investigation of purely siliceous zeolite Y under pressure. <i>Journal of the American Chemical Society</i> , 2004 , 126, 12015-22	16.4	94	
280	Synthesis of orthorhombic Mo-V-Sb oxide species by assembly of pentagonal Mo6O21 polyoxometalate building blocks. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 3782-6	16.4	88	
279	Direct imaging of the MoVTeNbO M1 phase using an aberration-corrected high-resolution scanning transmission electron microscope. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 2788-91	16.4	87	
278	Structure of ZrV2O7from 263 to 470°C. Journal of Solid State Chemistry, 1997, 132, 355-360	3.3	85	
277	Doping gamma-Fe(2)O(3) nanoparticles with Mn(III) suppresses the transition to the alpha-Fe(2)O(3) structure. <i>Journal of the American Chemical Society</i> , 2003 , 125, 11470-1	16.4	85	
276	Structural evidence for .picomplexes in catalytically active Y-zeolites with o-, m-, and p-xylene. <i>The Journal of Physical Chemistry</i> , 1991 , 95, 5255-5261		84	
275	Epitaxial Thin-Film Deposition and Dielectric Properties of the Perovskite Oxynitride BaTaO2N. <i>Chemistry of Materials</i> , 2007 , 19, 618-623	9.6	79	
274	Structural Refinement of the High Temperature Form of Bi2MoO6. <i>Journal of Solid State Chemistry</i> , 1994 , 111, 118-127	3.3	79	
273	Structural and Bonding Trends in Ruthenium Pyrochlores. <i>Journal of Solid State Chemistry</i> , 1996 , 126, 261-270	3.3	75	

272	Unusual 180 degrees P-O-P Bond Angles in ZrP(2)O(7). Inorganic Chemistry, 1996, 35, 485-489	5.1	74
271	Pressure-induced structural and electronic changes in AlH3. <i>Physical Review B</i> , 2006 , 74,	3.3	73
270	Structure of nanocrystalline MgFe2O4from X-ray diffraction, Rietveld and atomic pair distribution function analysis. <i>Journal of Applied Crystallography</i> , 2005 , 38, 772-779	3.8	73
269	Preparation and Structural Characterization of Two New Phases of Aluminum Trifluoride. <i>Chemistry of Materials</i> , 1995 , 7, 75-83	9.6	73
268	Controlling the size of magnetic nanoparticles using pluronic block copolymer surfactants. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 15-8	3.4	70
267	Pressure-induced phase transitions and templating effect in three-dimensional organic-inorganic hybrid perovskites. <i>Physical Review B</i> , 2003 , 68,	3.3	70
266	Structures and thermodynamics of the mixed alkali alanates. <i>Physical Review B</i> , 2005 , 71,	3.3	70
265	Role of the lattice in the gamma>alpha phase transition of Ce: a high-pressure neutron and x-ray diffraction study. <i>Physical Review Letters</i> , 2004 , 92, 105702	7.4	69
264	Improvement of the Structural Model for the M1 Phase MoVNbIIeD Propane (Amm)oxidation Catalyst. <i>Topics in Catalysis</i> , 2011 , 54, 614-626	2.3	68
263	Trigonal SrAl2H2: the first Zintl phase hydride. <i>Journal of Alloys and Compounds</i> , 2000 , 306, 127-132	5.7	68
262	Electrically tunable molecular doping of graphene. Applied Physics Letters, 2013, 102, 043101	3.4	65
261	A2Cu2CoO2S2 (A = Sr, Ba), A Novel Example of a Square-Planar CoO2 Layer. <i>Journal of the American Chemical Society</i> , 1997 , 119, 12398-12399	16.4	64
260	Aniline in Yb,Na-Y: A neutron powder diffraction study. Zeolites, 1991, 11, 832-836		63
259	First structural investigation of a super-hydrated zeolite. <i>Journal of the American Chemical Society</i> , 2001 , 123, 12732-3	16.4	60
258	Sr3MO4F (M=Al, Ga) New Family of Ordered Oxyfluorides. <i>Journal of Solid State Chemistry</i> , 1999 , 144, 228-231	3.3	59
257	Trace gas detection using nanostructured graphite layers. <i>Applied Physics Letters</i> , 2007 , 91, 233101	3.4	58
256	Mixed Iron Manganese Oxide Nanoparticles. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 14876-14883	3.4	58
255	Structure of intercalated Cs in zeolite ITQ-4: an array of metal ions and correlated electrons confined in a pseudo-1D nanoporous host. <i>Physical Review Letters</i> , 2002 , 89, 075502	7.4	58

(2010-1999)

254	Cubic CsCaH3 and hexagonal RbMgH3: new examples of fluoride-related perovskite-type hydrides. Journal of Alloys and Compounds, 1999 , 282, 125-129	5.7	58
253	Neutron powder investigation of the tetragonal to monoclinic phase transformation in undoped zirconia. <i>Acta Crystallographica Section B: Structural Science</i> , 1991 , 47, 881-886		57
252	Pressure- and heat-induced insertion of CO2 into an auxetic small-pore zeolite. <i>Journal of the American Chemical Society</i> , 2011 , 133, 1674-7	16.4	55
251	Light-induced structural changes in sodiumnitroprusside (Na2(Fe(CN)5NO)⊉D2O) at 80 K. <i>European Physical Journal B</i> , 1991 , 83, 125-130	1.2	54
250	Optimized imaging using non-rigid registration. <i>Ultramicroscopy</i> , 2014 , 138, 46-56	3.1	52
249	Magnetoelastic tetragonal-to-orthorhombic distortion in ErNi2B2C. <i>Physical Review B</i> , 1997 , 56, 7843-78	3 46	52
248	Thermal Evolution of the Crystal Structure of the Rhombohedral Bi0.75Sr0.25O1.375 Phase: A Single Crystal Neutron Diffraction Study. <i>Journal of Solid State Chemistry</i> , 1994 , 112, 1-8	3.3	52
247	Near UV excited line and broad band photoluminescence of an anion-ordered oxyfluoride. <i>Journal of the American Chemical Society</i> , 2010 , 132, 4516-7	16.4	51
246	Three-dimensional structure of nanocomposites from atomic pair distribution function analysis: study of polyaniline and (polyaniline)(0.5)V(2)O(5) x 1.0 H(2)O. <i>Journal of the American Chemical Society</i> , 2005 , 127, 8805-12	16.4	51
245	Cation and anion ordering in the layered oxyfluorides Sr3NAxAlO4F (A=Ba, Ca). <i>Journal of Solid State Chemistry</i> , 2003 , 172, 89-94	3.3	48
244	Magnetic excitations and soft-mode transition in the quasi-one-dimensional mixed-spin antiferromagnet Pr2BaNiO5. <i>Physical Review B</i> , 1996 , 54, 6437-6447	3.3	48
243	Neutron powder investigation of the monoclinic to tetragonal phase transformation in undoped zirconia. <i>Acta Crystallographica Section B: Structural Science</i> , 1990 , 46, 724-730		48
242	Atomic-level imaging of Mo-V-O complex oxide phase intergrowth, grain boundaries, and defects using HAADF-STEM. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 6152-7	11.5	47
241	Atomic-Scale Investigation of Two-Component MoVO Complex Oxide Catalysts Using Aberration-Corrected High-Angle Annular Dark-Field Imaging. <i>Chemistry of Materials</i> , 2010 , 22, 2033-20	40 ⁶	47
240	Crystal structure refinement of Nd2 \blacksquare CexCuOrm4 (x = 0.05 \blacksquare .30) by x-ray (295 K) and neutron (1.5 K) powder diffraction. <i>Solid State Communications</i> , 1990 , 73, 791-795	1.6	47
239	Synthesis, structure, and magnetic properties of Sr2NiOsO6 and Ca2NiOsO6: two new osmium-containing double perovskites. <i>Inorganic Chemistry</i> , 2005 , 44, 9676-83	5.1	46
238	Low-temperature structural behavior of Sr2RuO4. <i>Physical Review B</i> , 1995 , 52, R9843-R9846	3.3	46
237	Defect Monitoring and Substitutions in Sr3\(\text{N} AxAlO4F (A = Ca, Ba) Oxyfluoride Host Lattices and Phosphors. \(\text{Journal of Physical Chemistry C, 2010}, 114, 11576-11583 \)	3.8	45

236	Using Aberration-Corrected STEM Imaging to Explore Chemical and Structural Variations in the M1 Phase of the MoVNbTeO Oxidation Catalyst. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 10043-10049	3.8	45
235	Single-crystal neutron diffraction study of metamict zircon up to 2000 K. <i>Journal of Applied Crystallography</i> , 1992 , 25, 519-523	3.8	45
234	Phase transition of zeolite RHO at high-pressure. <i>Journal of the American Chemical Society</i> , 2001 , 123, 8418-9	16.4	44
233	Magnetic phase diagram of CoNb2O6: A neutron diffraction study. <i>Journal of Magnetism and Magnetic Materials</i> , 1995 , 151, 123-131	2.8	44
232	Location of para-Xylene in Yb-Faujasite (Zeolite Y) by Neutron Diffraction. <i>Angewandte Chemie International Edition in English</i> , 1989 , 28, 770-772		44
231	A LAXS (large angle x-ray scattering) and EXAFS (extended x-ray absorption fine structure) investigation of conductive amorphous nickel tetrathiolato polymers. <i>Journal of the American Chemical Society</i> , 1988 , 110, 1833-1840	16.4	44
230	Crystal Structures and Phase Transitions in the SrTiO3BrZrO3 Solid Solution. <i>Journal of Solid State Chemistry</i> , 2001 , 156, 255-263	3.3	43
229	Reentrant transition from an incipient charge-ordered state to a ferromagnetic metallic state in a rare-earth manganate. <i>Physical Review B</i> , 1998 , 57, R8115-R8118	3.3	43
228	Magnetic gap excitations in a one-dimensional mixed spin antiferromagnet Nd2BaNiO5. <i>Physical Review B</i> , 1996 , 54, 7210-7215	3.3	43
227	Phase separation over an extended compositional range: Studies of the Ca1\(\mathbb{B}\) ixMnO3 (x. <i>Physical Review B</i> , 2000 , 62, 14928-14942	3.3	41
226	The location of mesitylene adsorbed in rare-earth-exchanged Y zeolite. Zeolites, 1992, 12, 237-239		41
225	Luminescent phosphors, based on rare earth substituted oxyfluorides in the A(1)3\(A(2)\) A(2)xMO4F family with A(1)/A(2)=Sr, Ca, Ba and M=Al, Ga. <i>Journal of Luminescence</i> , 2009 , 129, 952-957	3.8	40
224	High-pressure neutron diffraction study of superhydrated natrolite. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 18223-5	3.4	40
223	Crystal and molecular structures of rhenium heptafluoride. <i>Science</i> , 1994 , 263, 1265-7	33.3	40
222	Oxygen and strontium codoping of La2NiO4: Room-temperature phase diagrams. <i>Physical Review B</i> , 2004 , 70,	3.3	39
221	THE STRUCTURE OF Bi26Mo10O69. <i>Materials Research Bulletin</i> , 1997 , 32, 947-962	5.1	38
220	Valence-electron distribution in MgB2 by accurate diffraction measurements and first-principles calculations. <i>Physical Review B</i> , 2004 , 69,	3.3	38
219	3D structure of dendritic and hyper-branched macromolecules by X-ray diffraction. <i>Solid State Communications</i> , 2005 , 134, 671-675	1.6	38

(2003-2005)

218	Letter. Pressure-induced stabilization of ordered paranatrolite: A new insight into the paranatrolite controversy. <i>American Mineralogist</i> , 2005 , 90, 252-257	2.9	38	
217	Localisation of excess oxygen in the high-Tc 2223-phase Bi1.9Pb0.3Sr2.0Ca1.9Cu3.0O10+Iby neutron powder diffraction. <i>Physica C: Superconductivity and Its Applications</i> , 1990 , 171, 339-343	1.3	38	
216	One-step synthesis of core(Cr)/shell(gamma-Fe(2)O(3)) nanoparticles. <i>Journal of the American Chemical Society</i> , 2005 , 127, 5730-1	16.4	37	
215	Anisotropic compression of edingtonite and thomsonite to 6 GPa at room temperature. <i>Physics and Chemistry of Minerals</i> , 2004 , 31, 22-27	1.6	37	
214	Low temperature structural studies on PrAlO3. <i>Journal of Physics Condensed Matter</i> , 2001 , 13, L203-L20)9 1.8	37	
213	Chemical short range order obtained from the atomic pair distribution function. <i>Zeitschrift Fur Kristallographie - Crystalline Materials</i> , 2002 , 217, 47-50	1	37	
212	Syntheses, Crystal Structures, and Properties of New Layered Tungsten(VI)-Containing Materials Based on the Hexagonal-WO3 Structure: M2(WO3)3SeO3 (M = NH4, Rb, Cs). <i>Journal of Solid State Chemistry</i> , 1995 , 120, 112-120	3.3	37	
211	High-temperature neutron powder diffraction study of ZrSiO4 up to 1900 K. <i>Acta Crystallographica Section B: Structural Science</i> , 1992 , 48, 584-590		37	
210	Irreversible xenon insertion into a small-pore zeolite at moderate pressures and temperatures. Nature Chemistry, 2014, 6, 835-9	17.6	36	
209	Comparison of MoVTaTeO and MoVNbTeO M1 crystal chemistry. <i>Topics in Catalysis</i> , 2006 , 38, 31-40	2.3	36	
208	Unraveling the symmetry of the hole states near the Fermi level in the MgB2 superconductor. <i>Physical Review Letters</i> , 2002 , 88, 247002	7.4	36	
207	Structural studies of Sr2GaSbO6, Sr2NiMoO6, and Sr2FeNbO6using pressure and temperature. Journal of Physics Condensed Matter, 2006 , 18, 8761-8780	1.8	35	
206	The effect of Nb or Ta substitution into the M1 phase of the MoV(Nb,Ta)TeO selective oxidation catalyst. <i>Catalysis Today</i> , 2009 , 142, 320-328	5.3	34	
205	Bonding and Structural Variations in Doped Bi2Sn2O7. <i>Journal of Solid State Chemistry</i> , 1997 , 131, 317-3	335	34	
204	High-Pressure Chemistry of a Zeolitic Imidazolate Framework Compound in the Presence of Different Fluids. <i>Journal of the American Chemical Society</i> , 2016 , 138, 11477-80	16.4	33	
203	Highly sensitive and multidimensional detection of NO2 using In2O3 thin films. <i>Sensors and Actuators B: Chemical</i> , 2011 , 160, 251-259	8.5	33	
202	Selective CO2 trapping in guest-free hydroquinone clathrate prepared by gas-phase synthesis. <i>ChemPhysChem</i> , 2011 , 12, 1056-9	3.2	33	
201	Pressure-induced cation migration and volume expansion in the defect pyrochlores ANbWO6 (A = NH4+, Rb+, H+, K+). <i>Journal of the American Chemical Society</i> , 2003 , 125, 4572-9	16.4	33	

200	Polymorphism of Gd5Si2Ge2: The equivalence of temperature, magnetic field, and chemical and hydrostatic pressures. <i>Physical Review B</i> , 2005 , 71,	3.3	33
199	Degradation behavior of LaNi5\(\mathbb{B}\)SnxHz (x=0.20\(\mathbb{D}\).25) at elevated temperatures. <i>Journal of Alloys and Compounds</i> , 2002 , 330-332, 271-275	5.7	33
198	Magnetic Structure and Giant Magnetoresistance of Ferromagnetic La1Mn1D3An Example of Double-Exchange Striction?. <i>Journal of Solid State Chemistry</i> , 1996 , 126, 337-341	3.3	33
197	New Apatite-Type Oxide Ion Conductor, Bi2La8[(GeO4)6]O3: Structure, Properties, and Direct Imaging of Low-Level Interstitial Oxygen Atoms Using Aberration-Corrected Scanning Transmission Electron Microscopy. <i>Advanced Functional Materials</i> , 2017 , 27, 1605625	15.6	32
196	Synthesis of Orthorhombic Mo-V-Sb Oxide Species by Assembly of Pentagonal Mo6O21 Polyoxometalate Building Blocks. <i>Angewandte Chemie</i> , 2009 , 121, 3840-3844	3.6	32
195	Powder X-ray diffraction study of the rhombohedral to cubic phase transition in TiF3. <i>Materials Research Bulletin</i> , 2002 , 37, 77-83	5.1	32
194	Super-hydrated zeolites: pressure-induced hydration in natrolites. <i>Chemistry - A European Journal</i> , 2013 , 19, 10876-83	4.8	31
193	NO2 detection by adsorption induced work function changes in In2O3 thin films. <i>Applied Physics Letters</i> , 2007 , 91, 043113	3.4	31
192	Pressure and temperature-dependent structural studies of Ba2BiTaO6. <i>Journal of Solid State Chemistry</i> , 2005 , 178, 207-211	3.3	31
191	The High-Temperature Phase Transition in Perovskite. <i>Europhysics Letters</i> , 1993 , 24, 281-285	1.6	31
190	Synthesis and crystal structure of tetragonal LnMg2H7 (Ln=La, Ce), two Laves phase hydride derivatives having ordered hydrogen distribution. <i>Journal of Alloys and Compounds</i> , 1997 , 253-254, 313-	·3 ⁵ 1 ⁷ 7	30
189	Crystal Growth of Two New Niobates, La2KNbO6 and Nd2KNbO6: Structural, Dielectric, Photophysical, and Photocatalytic Properties. <i>Chemistry of Materials</i> , 2008 , 20, 3327-3335	9.6	30
188	A role for subducted super-hydrated kaolinite in Earth® deep water cycle. <i>Nature Geoscience</i> , 2017 , 10, 947-953	18.3	29
187	Temperature dependent total scattering structural study of CaCu3Ti4O12. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, S5091-S5102	1.8	29
186	High-Temperature Incommensurate-to-Commensurate Phase Transition in the Bi2MoO6 Catalyst. Journal of Solid State Chemistry, 2000 , 155, 206-215	3.3	29
185	Synthesis and high-pressure behavior of Na0.3CoO2?1.3H2O and related phases. <i>Physical Review B</i> , 2003 , 68,	3.3	28
184	Temperature Dependent Structural Behavior of Sr2RhO4. <i>Journal of Solid State Chemistry</i> , 1996 , 123, 186-189	3.3	28
183	Magnetic structures of the tri-rutiles NiTa2O6 and NiSb2O6. <i>Journal of Magnetism and Magnetic Materials</i> , 1998 , 184, 111-115	2.8	27

182	Phase transition in BaBi2Nb2O9: Implications for layered ferroelectrics. <i>Physical Review B</i> , 2002 , 66,	3.3	27	
181	Pressure-Induced Phase Transition in PrAlO3. <i>Chemistry of Materials</i> , 2002 , 14, 2644-2648	9.6	27	
180	Synthesis and crystal structures of gallium and germanium variants of cancrinite. <i>Microporous and Mesoporous Materials</i> , 2000 , 39, 445-455	5.3	27	
179	Observation of Sublattice Disordering of the Catalytic Sites in a Complex Mol/NbITeD Oxidation Catalyst Using High Temperature STEM Imaging. <i>Topics in Catalysis</i> , 2014 , 57, 1138-1144	2.3	26	
178	Direct Imaging of the MoVTeNbO M1 Phase Using An Aberration-Corrected High-Resolution Scanning Transmission Electron Microscope. <i>Angewandte Chemie</i> , 2008 , 120, 2830-2833	3.6	26	
177	Pressure-induced orthorhombic to rhombohedral phase transition in LaGaO3. <i>Journal of Physics Condensed Matter</i> , 2001 , 13, L925-L930	1.8	26	
176	Magnetism in and. <i>Journal of Physics Condensed Matter</i> , 1996 , 8, 10609-10625	1.8	26	
175	Crystallographic distortion and magnetic structure of terbium iron garnet at low temperatures. Journal of Solid State Chemistry, 1990 , 84, 39-51	3.3	26	
174	Synthesis and characterization of Bi nanorods and superconducting NiBi particles. <i>Journal of Alloys and Compounds</i> , 2005 , 400, 88-91	5.7	25	
173	Structural analysis of a potassium hollandite K1.35Ti8O16. <i>Journal of Solid State Chemistry</i> , 1989 , 83, 61-68	3.3	25	
172	Pressure-Induced Argon Insertion into an Auxetic Small Pore Zeolite. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 6922-6927	3.8	24	
171	Pressure-induced migration of zeolitic water in laumontite. <i>Physics and Chemistry of Minerals</i> , 2004 , 31, 421	1.6	24	
170	Composite germanium monochromators for high resolution neutron powder diffraction applications. <i>Journal of Neutron Research</i> , 1994 , 2, 85-94	0.5	24	
169	Colossal positive magnetoresistance in a doped nearly magnetic semiconductor. <i>Physical Review B</i> , 2008 , 77,	3.3	23	
168	Formation and Manipulation of Confined Water Wires. <i>Nano Letters</i> , 2004 , 4, 619-621	11.5	23	
167	Crystal Structure of Nonstoichiometric La(Ni,Sn)[sub 5+x] Alloys and Their Properties as Metal Hydride Electrodes. <i>Electrochemical and Solid-State Letters</i> , 1999 , 2, 111		23	
166	Synthesis, structure, magnetic properties and structural distortion under high pressure of a new osmate, Sr2CuOsO6. <i>Journal of Solid State Chemistry</i> , 2008 , 181, 623-627	3.3	22	
165	Site Preference of Cobalt and Deuterium in the Structure of a Complex AB 5 Alloy Electrode: A Neutron Powder Deffraction Study. <i>Journal of the Electrochemical Society</i> , 1999 , 146, 15-19	3.9	22	

164	The DuPont Powder Challenge: The Crystal Structure of [C5NH6][Al3F10]A Cautionary Tale. <i>Chemistry of Materials</i> , 1999 , 11, 2562-2567	9.6	22
163	Cs(TiAs)O5 and Cs(TiP)O5: A Disordered Parent Structure of ABOCO4 Compounds. <i>Journal of Solid State Chemistry</i> , 1995 , 120, 299-310	3.3	22
162	Electronic Band Structure Calculations of theMNX(M=Zr, Ti;X=Cl, Br, I) System and Its Superconducting Member, Li-DopedEZrNCl. <i>Journal of Solid State Chemistry</i> , 1998 , 138, 207-219	3.3	21
161	Pressure-Dependent Structural and Chemical Changes in a Metal©rganic Framework with One-Dimensional Pore Structure. <i>Chemistry of Materials</i> , 2016 , 28, 5336-5341	9.6	20
160	Fast and reversible hydrogen storage in channel cages of hydroquinone clathrate. <i>Chemical Physics Letters</i> , 2012 , 546, 120-124	2.5	20
159	Synthesis and crystal structure of BaMgH4: A centrosymmetric variant of SrMgH4. <i>Journal of Alloys and Compounds</i> , 1997 , 256, 155-158	5.7	20
158	Using Aberration-corrected STEM Imaging to Explore Chemical and Structural Variations in the M1 Phase of the MoVNbTeO Oxidation Catalyst. <i>Microscopy and Microanalysis</i> , 2008 , 14, 2-3	0.5	20
157	The preparation and characterization of photocatalytically active TiO2 thin films and nanoparticles using Successive-Ionic-Layer-Adsorption-and-Reaction. <i>Thin Solid Films</i> , 2006 , 515, 1250-1254	2.2	20
156	Structural variants in ABO3 type perovskite oxides. On the structure of BaPbO3. <i>Solid State Communications</i> , 2001 , 119, 549-552	1.6	20
155	Pressure induced octahedral tilting distortion in Ba2YTaO6. <i>Chemical Communications</i> , 2006 , 168-70	5.8	19
154	Pressure-induced phase transition and octahedral tilt system change of Ba2BiSbO6. <i>Journal of Solid State Chemistry</i> , 2006 , 179, 917-922	3.3	19
153	Neutron diffraction and x-ray resonant exchange-scattering studies of the zero-field magnetic structures of TbNi2Ge2. <i>Physical Review B</i> , 1998 , 58, 8522-8533	3.3	19
152	Neutron powder diffraction study in the mixed molecular system (NaCN)1-x(KCN)x. <i>Physical Review B</i> , 1989 , 39, 6186-6193	3.3	19
151	Structure and electronic properties of MoVO type mixed-metal oxides - a combined view by experiment and theory. <i>Dalton Transactions</i> , 2015 , 44, 13778-95	4.3	18
150	Two-Step Pressure-Induced Superhydration in Small Pore Natrolite with Divalent Extra-Framework Cations. <i>Chemistry of Materials</i> , 2015 , 27, 3874-3880	9.6	18
149	Compression mechanisms of symmetric and JahnIIeller distorted octahedra in double perovskites: A2CuWO6 (A=Sr, Ba), Sr2CoMoO6, and La2LiRuO6. <i>Journal of Solid State Chemistry</i> , 2006 , 179, 3556-35	6 ³ ·3	18
148	Neutron powder investigation of praseodymium and cerium nitride fluoride solid solutions. <i>Journal of Solid State Chemistry</i> , 1989 , 83, 324-331	3.3	18
147	STEM HAADF Image Simulation of the Orthorhombic M1 Phase in the Mo-V-Nb-Te-O Propane Oxidation Catalyst. <i>ChemCatChem</i> , 2011 , 3, 1028-1033	5.2	17

146	In-situ dehydration studies of fully K-, Rb-, and Cs-exchanged natrolites. <i>American Mineralogist</i> , 2011 , 96, 393-401	2.9	17	
145	Synthesis and structure of the bilayer hydrate Na0.3NiO2.1.3D2O. <i>Inorganic Chemistry</i> , 2006 , 45, 3490-2	. 5.1	17	
144	Subnanosecond phase transition dynamics in laser-shocked iron. <i>Science Advances</i> , 2020 , 6, eaaz5132	14.3	16	
143	A Combined Variable-Temperature Neutron Diffraction and Thermogravimetric Analysis Study on a Promising Oxygen Electrode, SrCoNbO, for Reversible Solid Oxide Fuel Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 34855-34864	9.5	16	
142	Oxy-Fluoride Phosphors for Solid State Lighting. <i>ECS Journal of Solid State Science and Technology</i> , 2013 , 2, R3088-R3099	2	16	
141	Magnetic excitations and soft-mode transition in Pr 2 BaNiO 5. <i>Europhysics Letters</i> , 1996 , 35, 385-390	1.6	16	
140	Cation Substitution in Defect Thiospinels: Structural and Magnetic Properties of GaV4-xMoxS8 (0阻). <i>Chemistry of Materials</i> , 2007 , 19, 5035-5044	9.6	16	
139	The Determination of Brfisted Acid Sites in Zeolite ERS-7 by Neutron and X-ray Powder Diffraction. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 1947-1955	3.4	16	
138	Comment on "Observation of oscillatory magnetic order in the antiferromagnetic superconductor HoNi2Ba2C". <i>Physical Review Letters</i> , 1995 , 75, 2628	7.4	16	
137	Ground- and light-induced metastable states of sodiumnitroprusside. <i>Physica B: Condensed Matter</i> , 1992 , 180-181, 293-298	2.8	16	
136	Elastic and quasielastic neutron scattering studies in KBr:KCN mixed crystals. <i>European Physical Journal B</i> , 1989 , 75, 81-99	1.2	16	
135	Wasserstoffbrüken. I. Molekllund KristallStruktur der Phosphonsüre H3PO3 IRütgen- und Neutronenbeugungsuntersuchungen an der Hydrogen- und der Deuterium-Verbindung. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 1990 , 591, 17-31	1.3	16	
134	Monovalent Cation-Exchanged Natrolites and Their Behavior under Pressure. A Computational Study. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 19020-19030	3.8	15	
133	Hydrogen sorption properties of intermetallic TbNiAl and crystal structure of TbNiAlD1.1. <i>Journal of Alloys and Compounds</i> , 1998 , 279, L4-L7	5.7	15	
132	Pressure-induced hydration in zeolite tetranatrolite. <i>American Mineralogist</i> , 2006 , 91, 247-251	2.9	15	
131	Pressure induced valence and structural phase transition in Ba2PrRu0.8Ir0.2O6. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, 3295-3301	1.8	15	
130	Pressure-induced hydration at 0.6 GPa in a synthetic gallosilicate zeolite. <i>Journal of the American Chemical Society</i> , 2003 , 125, 6036-7	16.4	15	
129	High-resolution X-ray emission and absorption study of the B 2 p valence band electronic structure of MgB 2. <i>Europhysics Letters</i> , 2001 , 56, 112-118	1.6	15	

128	Using wafer stacks as neutron monochromators. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1994 , 338, 71-77	1.2	15
127	A Powder Neutron Diffraction Investigation of the Solid Phases of IF7. <i>Journal of Solid State Chemistry</i> , 1993 , 103, 275-279	3.3	15
126	A study of disorder in the SiO2 host lattice of dodecasil 1H using synchrotron radiation. <i>Acta Crystallographica Section B: Structural Science</i> , 1993 , 49, 745-754		15
125	Neutron backscattering on vibrating silicon crystals-experimental results on the neutron backscattering spectrometer IN10. <i>European Physical Journal B</i> , 1993 , 90, 143-153	1.2	15
124	Electron Beam-Induced Fragmentation and Dispersion of Bi N i Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 10824-10828	3.8	14
123	Opportunities in the 'post-academic' world. <i>Nature Nanotechnology</i> , 2007 , 2, 329-32	28.7	14
122	Synthesis and characterization of Na0.3RhO2D.6H2OB semiconductor with a weak ferromagnetic component. <i>Solid State Communications</i> , 2005 , 135, 51-56	1.6	14
121	Neutron scattering studies in (NaCN)1⊠(KCN)x. <i>Physica B: Condensed Matter</i> , 1989 , 156-157, 195-197	2.8	14
120	Synthesis of TiNF and Structure Determination by Powder Diffraction using Synchrotron Radiation. <i>Angewandte Chemie International Edition in English</i> , 1988 , 27, 929-930		14
119	Chabazite structures with Li+, Na+, Ag+, K+, NH4+, Rb+ and Cs+ as lextra-framework cations. <i>Microporous and Mesoporous Materials</i> , 2016 , 221, 253-263	5.3	13
118	Pressure-Induced Enhancement of Broad-Band White Light Emission in Butylammonium Lead Bromide. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 4131-4137	6.4	13
117	Determination of Formation Regions of Titanium Phosphates; Determination of the Crystal Structure of Titanium Phosphate, Ti(PO4)(H2PO4), from Neutron Powder Data. <i>Journal of Solid State Chemistry</i> , 1998 , 140, 266-271	3.3	13
116	Effect of pressure and chemical substitutions on the charge-density-wave in LaAgSb2. <i>Physical Review B</i> , 2006 , 73,	3.3	13
115	Magnetostriction in a simple trivalent manganese perovskite. <i>Physical Review B</i> , 2004 , 69,	3.3	13
114	Jahn-Teller transition in TiF3 investigated using density-functional theory. <i>Physical Review B</i> , 2004 , 69,	3.3	13
113	Neutron diffraction study of the orthorhombic low-temperature phase of N2D7I and X-ray investigations of the tetragonal and orthorhombic phases of N2H7I. <i>Zeitschrift Fur Kristallographie - Crystalline Materials</i> , 1993 , 203, 199-214	1	13
112	A neutron powder investigation of the high-temperature phase transition in NiTiO3. <i>Zeitschrift Fur Kristallographie - Crystalline Materials</i> , 1995 , 210, 328-337	1	13
111	Synthese und Struktur von Zr4ON3F5, einer Verbindung mit fluorit-verwandter Berstruktur vom Vernier-Typ. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 1993 , 619, 367-373	1.3	13

110	Synthese von TiNF und Strukturbestimmung durch Pulverdiffraktometrie mit Synchrotronstrahlung. <i>Angewandte Chemie</i> , 1988 , 100, 1013-1013	3.6	13
109	ADF-STEM Imaging of Nascent Phases and Extended Disorder Within the Mol/NblleD Catalyst System. <i>Topics in Catalysis</i> , 2016 , 59, 1489-1495	2.3	13
108	Structural distortions in Sr3-xAxMO4F (A=Ca, Ba; M=Al, Ga, In) anti-Perovskites and corresponding changes in photoluminescence. <i>Journal of Solid State Chemistry</i> , 2012 , 194, 297-306	3.3	12
107	Immobilization of large, aliovalent cations in the small-pore zeolite K-natrolite by means of pressure. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 4848-51	16.4	12
106	Pressure-induced hydration and order-disorder transition in a synthetic potassium gallosilicate zeolite with gismondine topology. <i>Journal of the American Chemical Society</i> , 2008 , 130, 2842-50	16.4	12
105	Two-dimensional signatures for molecular identification. <i>Applied Physics Letters</i> , 2008 , 92, 103120	3.4	12
104	Phases and phase transitions in the mixed molecular system (NaCN)1⊠(KCN)x. <i>European Physical Journal B</i> , 1990 , 79, 423-430	1.2	12
103	The structure of the 🗓-phase CaZr4O9 in calcium stabilized zirconia. <i>Materials Research Bulletin</i> , 1990 , 25, 435-442	5.1	12
102	Aberration-corrected STEM investigation of the M2 phase of MoVNbTeO selective oxidation catalyst. <i>Journal of Electron Microscopy</i> , 2009 , 58, 193-8		11
101	Verwey Transition under Oxygen Loading in RBaFe2O5+w (R=Nd and Sm). <i>Journal of Solid State Chemistry</i> , 2002 , 167, 480-493	3.3	11
100	Positional disorder of Ba in the thermoelectric germanium clathrate Ba6Ge25. <i>Solid State Communications</i> , 2003 , 127, 43-46	1.6	11
99	Temperature and pressure dependent structural studies of the ordered double perovskites Sr2TbRu1IIrxO6. <i>Journal of Solid State Chemistry</i> , 2005 , 178, 2282-2291	3.3	11
98	Unusual Metal I hsulator Transitions in the LaTi1-xVxO3 Perovskite Phases. <i>Chemistry of Materials</i> , 1996 , 8, 418-427	9.6	11
97	Hydrothermal syntheses and crystal structures of new layered tungsten(VI) methylphosphonates, M2(WO3)3PO3CH3(M = NH4, Rb, Cs). <i>Journal of Materials Chemistry</i> , 1996 , 6, 81		11
96	Pressure-induced hydration and insertion of CO2 into Ag-natrolite. <i>Chemistry - A European Journal</i> , 2013 , 19, 5806-11	4.8	10
95	Pressure- and temperature-dependent X-ray diffraction studies of NdCrO3. <i>Journal of Alloys and Compounds</i> , 2007 , 433, 91-96	5.7	10
94	A neutron and synchrotron X-ray scattering study of Sr2CuO3+Bynthesized under moderate pressure: a new compound related to superconducting Sr2CuO3.1. <i>Physica C: Superconductivity and Its Applications</i> , 1994 , 235-240, 1003-1004	1.3	10
93	Structural and Magnetic Properties of the Osmium Double Perovskites BaSrYOsO. <i>Inorganic Chemistry</i> , 2017 , 56, 6565-6575	5.1	9

92	Pressure-induced metathesis reaction to sequester Cs. <i>Environmental Science & Environmental Science &</i>	10.3	9
91	High-Quality Image Formation by Nonlocal Means Applied to High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy (HAADFBTEM). <i>Nanostructure Science and Technology</i> , 2012 , 127-145	0.9	9
90	High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy Investigations of Bimetallic Nickel Bismuth Nanomaterials Created by Electron-Beam-Induced Fragmentation. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 2538-2543	3.8	9
89	Structure of Sn(ND3)2F4A Molecular Precursor for the Synthesis of Nitride Fluorides. <i>Journal of Solid State Chemistry</i> , 1998 , 138, 350-360	3.3	9
88	Low temperature magnetic structure of erbium iron garnet. European Physical Journal B, 1991, 82, 283-2	2 9.4	9
87	Low-temperature neutron diffraction study of [ReH5(PPh i Pr2)2(SiHPh2)2] and low-temperature X-ray diffraction study of [ReH5(PCyp3)2(SiH2Ph)2]. <i>Acta Crystallographica Section B: Structural Science</i> , 1992 , 48, 438-444		9
86	Pressure-driven phase transitions and reduction of dimensionality in 2D silicon nanosheets. <i>Nature Communications</i> , 2018 , 9, 5412	17.4	9
85	Low temperature structural phase transition of Ba3NaIr2O9. <i>Solid State Sciences</i> , 2009 , 11, 608-613	3.4	8
84	Synthesis and structure of the monolayer hydrate K0.3CoO2D.4H2O. <i>Solid State Communications</i> , 2005 , 134, 607-611	1.6	8
83	Darstellung und Kristallstruktur von Na28In14Sn15. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 1991 , 606, 79-90	1.3	8
82	Redistribution of native defects and photoconductivity in ZnO under pressure <i>RSC Advances</i> , 2019 , 9, 4303-4313	3.7	7
81	Inter- and Intralayer Compression of Germanane. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 28196-2820) 3 .8	7
80	Structures and self-activating photoluminescent properties of Sr3NAxGaO4F (A=Ba, Ca) materials. Journal of Solid State Chemistry, 2012 , 194, 375-384	3.3	7
79	Pressure-induced hydration and cation migration in a Cs+ exchanged gallosilicate zeolite LTL: Synchrotron X-ray powder diffraction study at ambient and high pressures. <i>Microporous and Mesoporous Materials</i> , 2010 , 136, 75-82	5.3	7
78	Dehydration-induced water disordering in a synthetic potassium gallosilicate natrolite. <i>Journal of the American Chemical Society</i> , 2007 , 129, 13744-8	16.4	7
77	Variable-temperature structural studies of tetranatrolite from Mt. Saint-Hilaire: Synchrotron X-ray powder diffraction and Rietveld analysis. <i>American Mineralogist</i> , 2005 , 90, 247-251	2.9	7
76	Properties of Li Nanocomposite Electrode Materials Prepared via Hydrogen-Driven, Solid-State, Metallurgical Reactions. <i>Journal of the Electrochemical Society</i> , 2001 , 148, A636	3.9	7
75	Sample Dependence of Magnetic Properties and Determination of Antiferromagnetic Structure of NdPd2Al3. <i>Journal of Solid State Chemistry</i> , 1996 , 127, 169-177	3.3	7

74	Elastic and inelastic neutron study of CuGeO3. Journal of Physics Condensed Matter, 1994, 6, 8469-8477	1.8	7
73	X-ray and neutron investigations on the intermediate phase of the CA-W04 aluminate sodalite CAW. <i>Phase Transitions</i> , 1991 , 32, 211-214	1.3	7
72	Synthesis, properties, and structure of conductive and superconductive molecular complexes and derived organometallic polymers. <i>Synthetic Metals</i> , 1987 , 19, 573-578	3.6	7
71	Structure, stability, and photoluminescence in the anti-perovskites Na3W1MoxO4F (0M1). Journal of Solid State Chemistry, 2015 , 230, 279-286	3.3	6
70	Structural changes and self-activated photoluminescence in reductively annealed Sr3AlO4F. <i>Journal of Solid State Chemistry</i> , 2015 , 228, 1-8	3.3	6
69	Impedance spectroscopic analysis of nanoparticle functionalized graphene/p-Si Schottky diode sensors. <i>Japanese Journal of Applied Physics</i> , 2016 , 55, 110312	1.4	6
68	Magnetic spin glass properties of the bi-layer hydrate Na0.3NiO2🗈 .3H2O. <i>Solid State Communications</i> , 2006 , 139, 60-63	1.6	6
67	The magnetic structure of TbNiAlD1.1. Journal of Alloys and Compounds, 2000, 311, 114-119	5.7	6
66	Structural and spectroscopic studies of alkali-metal exchanged stilbites. <i>Microporous and Mesoporous Materials</i> , 2016 , 224, 339-348	5.3	6
65	Structuration under pressure: Spatial separation of inserted water during pressure-induced hydration in mesolite. <i>American Mineralogist</i> , 2018 , 103, 175-178	2.9	6
64	Ethylene Epoxidation Catalyzed by Ag Nanoparticles on Ag-LSX Zeolites formed by Pressure- and Temperature-Induced Auto-Reduction. <i>Chemistry - A European Journal</i> , 2018 , 24, 1041-1045	4.8	5
63	Potassium-Exchanged Natrolite Under Pressure. Computational Study vs Experiment. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 22030-22039	3.8	5
62	Anisotropic compression of a synthetic potassium aluminogermanate zeolite with gismondine topology. <i>Journal of Solid State Chemistry</i> , 2010 , 183, 2305-2308	3.3	5
61	X-ray and neutron diffraction investigation at 298 K of NH4I INH3 and ND4I IND3 containing the cation H3N IH INH3+ and D3N ID IND3+. <i>Zeitschrift Fur Kristallographie - Crystalline Materials</i> , 1992 , 200, 225-235	1	5
60	Structural instabilities of the trigonally coordinated water molecules in Ba(IO3)2.H2O and Pb(ClO3)2.H2O studied by X-ray and neutron diffraction at 25 and 295 K. <i>Acta Crystallographica Section B: Structural Science</i> , 1992 , 48, 166-172		5
59	High-Pressure Phase Transitions of Morphologically Distinct ZnSnO Nanostructures. <i>ACS Omega</i> , 2019 , 4, 10539-10547	3.9	4
58	Thermal Expansion of the Superhydrated Small-Pore Zeolite Natrolite. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 3286-3291	3.8	4
57	Structure and magnetism of the mono-layer hydrate Na0.3NiO2 ? 0.7H2O. <i>Solid State Communications</i> , 2007 , 142, 75-79	1.6	4

56 Structural studies of rhodium doped Sr 2 RuO 4. Journal of Physics and Chemistry of Solids, 2002, 63, 2093-291004

) -	, , , , , , , , , , , , , , , , , , ,	5.7	· T
55	Discovery of a Rhombohedral Form of the Li-Exchanged Aluminogermanate Zeolite RHO and Its Pressure-, Temperature-, and Composition-Induced Phase Transitions. <i>Chemistry of Materials</i> , 2002 , 14, 3501-3508	9.6	4
54	Incommensurate modulations in the magnetic structure of the magnetic superconductor HoNi2B2C-a high-resolution neutron powder diffraction study. <i>Physica B: Condensed Matter</i> , 1995 , 215, 159-163	2.8	4
53	Ferroelastic transformation and crystal structure of Ba-diluted lead phosphate, (Pb1 [xBax)3(PO4)2. <i>Zeitschrift Fur Kristallographie - Crystalline Materials</i> , 1993 , 206, 213-231	1	4
52	Crystal structure and hydrogen bonding in Li/H-exchanged petalite, HAlSi4O10. <i>Zeitschrift F Kristallographie</i> , 1991 , 197, 27-40		4
51	High-speed time-resolved crystallography with neutrons: A feasibility study. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1990 , 292, 731-733	1.2	4
50	The crystal structure of HAlSi2O6 with a keatite-type framework. <i>Zeitschrift Fil Kristallographie</i> , 1990 , 190, 7-18		4
49	Solid State Materials Chemistry 2021 ,		4
48	Oxide Ion and Proton Conductivity in a Family of Highly Oxygen-Deficient Perovskite Derivatives <i>Journal of the American Chemical Society</i> , 2021 ,	16.4	4
47	Rational Design of a Commensurate (3 + 3)-D Modulated Structure within the Fast-Ion Conducting Stabilized Bi2O3 Series. <i>Chemistry of Materials</i> , 2017 , 29, 9171-9181	9.6	3
46	Universal Gas-Uptake Behavior of a Zeolitic Imidazolate Framework ZIF-8 at High Pressure. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 25769-25774	3.8	3
45	Pressure-Induced Amorphization of Small Pore Zeolites-the Role of Cation-H2O Topology and Anti-glass Formation. <i>Scientific Reports</i> , 2015 , 5, 15056	4.9	3
44	Spectroscopic and Computational Characterizations of Alkaline-Earth- and Heavy-Metal-Exchanged Natrolites. <i>ChemPlusChem</i> , 2014 , 79, 1096-1102	2.8	3
43	Immobilization of Large, Aliovalent Cations in the Small-Pore Zeolite K-Natrolite by Means of Pressure. <i>Angewandte Chemie</i> , 2012 , 124, 4932-4935	3.6	3
42	Chemical and Hydrostatic Pressure in Natrolites: Pressure-Induced Hydration of an Aluminogermanate Natrolite. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 18805-18811	3.8	3
41	Transition from the layered Sr2RhO4 to the monodimensional Sr4RhO6 phase. <i>Chemistry - A European Journal</i> , 2001 , 7, 1444-9	4.8	3
40	SrHg2O2Cl2, the First Strontium Mercury Oxychloride. Crystal Structure Determination by ab Initio Powder Methods. <i>Inorganic Chemistry</i> , 1998 , 37, 834-835	5.1	3
39	Temperature-Dependent Structural Behavior of Bi0.5Nd1.5Ru2O7. <i>Journal of Solid State Chemistry</i> , 1999 , 144, 467-469	3.3	3

(2018-1996)

38	Neutronenpulverdiffraktionsmessungen an [Zn(ND3)4]I2 bei 1,5 K, 10 K und 293 K: Wasserstoff-Br©kenbindungen und Bewegungen von ND3-Moleklen. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 1996 , 622, 597-602	1.3	3
37	The fluorite-related anion-excess structure of CeN0.222O0.667F1.333: Ordering of defect clusters. Journal of Solid State Chemistry, 1992 , 100, 246-254	3.3	3
36	Antiferroelectric phase transitions in (NaCN)1⊠(KCN)x. Ferroelectrics, 1990 , 106, 181-186	0.6	3
35	Pressure-Induced Hydration and Formation of Bilayer Ice in Nacrite, a Kaolin-Group Clay. <i>ACS Earth and Space Chemistry</i> , 2020 , 4, 183-188	3.2	3
34	X-ray Free Electron Laser-Induced Synthesis of 🛭 ron Nitride at High Pressures. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 3246-3252	6.4	3
33	Synthesis and structural characterization of the hexagonal anti-perovskite Na2CaVO4F. <i>Journal of Solid State Chemistry</i> , 2017 , 250, 134-139	3.3	2
32	Topotactic and reconstructive changes at high pressures and temperatures from Cs-natrolite to Cs-hexacelsian. <i>American Mineralogist</i> , 2015 , 100, 1562-1567	2.9	2
31	High-pressure and high-temperature transformation of Pb(II)-natrolite to Pb(II)-lawsonite. <i>Dalton Transactions</i> , 2016 , 45, 1622-30	4.3	2
30	Role of Cation Water Disorder during Cation Exchange in Small-Pore Zeolite Sodium Natrolite. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 16119-16126	3.8	2
29	High-pressure investigation of Sr3PbNiO6. <i>Journal of Alloys and Compounds</i> , 2005 , 390, 35-40	5.7	2
28	Non-Stoichiometric AB5 Type Alloys and Their Properties as Metal Hydride Electrodes. <i>Materials Science Forum</i> , 1999 , 315-317, 94-104	0.4	2
27	Neutron and Synchrotron Radiation High Pressure Experiments on Aluminate Sodalite Sr8[Al12O24](CrO4)2. <i>Crystal Research and Technology</i> , 1995 , 30, 767-773	1.3	2
26	Crystallographic and magnetic structures of highT c related (Bi/Pb)2Sr2FeO6.25 determined by neutron powder diffraction. <i>European Physical Journal B</i> , 1991 , 83, 165-170	1.2	2
25	Hydrogen bonding in barium hydroxide trihydrate by neutron diffraction. <i>Acta Crystallographica Section C: Crystal Structure Communications</i> , 1990 , 46, 361-363		2
24	Probing Compositional Order in Atomic Columns: STEM Simulations Beyond the Virtual Crystal Approximation. <i>Microscopy and Microanalysis</i> , 2020 , 26, 46-52	0.5	2
23	Pressure-induced assemblies and structures of graphitic-carbon sheet encapsulated Au nanoparticles. <i>Nanoscale</i> , 2020 , 12, 17462-17469	7.7	2
22	How fast should we innovate?. Journal of Responsible Innovation, 2016, 3, 255-259	2.1	2
21	Multi-slice frozen phonon simulations of high-angle annular dark field scanning transmission electron microscopy images of the structurally and compositionally complex Mo-V-Nb-Te oxide catalyst. <i>Advanced Structural and Chemical Imaging</i> , 2018 , 4, 9	3.9	2

20	Natrolites with different Fe2+/Fe3+ cation ratios. <i>Microporous and Mesoporous Materials</i> , 2017 , 244, 10	0951318	1
19	Local Structure Adaptations and Oxide Ionic Conductivity in the Type III Stability Region of (1 🛭 x)Bi2O3[kNb2O5. <i>Chemistry of Materials</i> , 2018 , 30, 3387-3394	9.6	1
18	A high resolution powder neutron diffraction study of the novel layered oxide BiMo2O7OD [2D2O. <i>Journal of Physics and Chemistry of Solids</i> , 1995 , 56, 1339-1343	3.9	1
17	Complex MolybdenumNanadium Oxide Bronzes and Suboxides as Catalysts for Selective Oxidation and Ammoxidation of Light Hydrocarbons 2019 , 157-198		1
16	The value of vague ideas in the development of the periodic system of chemical elements. Synth@e,1	0.8	1
15	High-pressure synchrotron X-ray diffraction study of tremolite and actinolite in various fluids. <i>Current Applied Physics</i> , 2018 , 18, 1218-1224	2.6	1
14	Transition from the Layered Sr2RhO4 to the Monodimensional Sr4RhO6 Phase 2001 , 7, 1444		1
13	Oxide Ion Conductivity, Proton Conductivity, and Phase Transitions in Perovskite-Derived Ba Sr YGaO 0 IB Materials <i>Chemistry of Materials</i> , 2022 , 34, 3185-3196	9.6	1
12	Layered 3-D Ferromagnets and Antiferromagnets, M2+(ReO4)2 (M = Mn, Fe, Co, Ni, Cu): Importance of Dipolar Interactions. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 453, 399		О
11	Pressure-Dependent Colossal Resistivity and Anomalous Optical Signatures in FeSbO4. <i>Journal of Physical Chemistry C</i> , 2022 , 126, 7630-7637	3.8	O
10	Solids: Characterization by Powder Diffraction 2014 , 1-19		
9	Spectroscopic and Computational Characterizations of Alkaline-Earth- and Heavy-Metal-Exchanged Natrolites. <i>ChemPlusChem</i> , 2014 , 79, 1066-1066	2.8	
8	Dehydration studies of natrolites: Role of monovalent extra-framework cations and degree of hydration. <i>American Mineralogist</i> , 2017 , 102, 1462-1469	2.9	
7	Neutron Powder Diffraction 2012, 1		
6	Non-superconducting Na0.3CoO22H2O. Solid State Communications, 2008, 148, 271-273	1.6	
5	Structural instability of the water molecule in Sr(IO3)2.H2O, a neutron diffraction study. <i>Acta Crystallographica Section C: Crystal Structure Communications</i> , 1990 , 46, 979-981		
4	A large-angle X-ray scattering study of two amorphous inorganic polymers, Ru(SPh)3 and Mo(SPh)3. <i>Journal of Solid State Chemistry</i> , 1987 , 71, 577-581	3.3	
3	Detecting Framework Distortions Predicted by Hybrid-DFT: An Opportunity to Improve the M1 Catalyst. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 11158-11163	6.4	

Pressure-Induced Enhancement of Optical Properties in Indium Oxide Nanowires. *Journal of Physical Chemistry C*, **2020**, 124, 10244-10251

3.8

Super-hydration and reduction of manganese oxide minerals at shallow terrestrial depths.. *Nature Communications*, **2022**, 13, 1942

17.4