Eric D Stein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4659879/publications.pdf

Version: 2024-02-01

100 papers 2,864 citations

32 h-index 50 g-index

104 all docs

104 docs citations

104 times ranked 3487 citing authors

#	Article	IF	CITATIONS
1	Environmental distribution and transformation of mercury compounds. Critical Reviews in Environmental Science and Technology, 1996, 26, 1-43.	6.6	296
2	Recent advances in environmental flows science and water management—Innovation in the Anthropocene. Freshwater Biology, 2018, 63, 1022-1034.	1.2	134
3	Is DNA Barcoding Actually Cheaper and Faster than Traditional Morphological Methods: Results from a Survey of Freshwater Bioassessment Efforts in the United States?. PLoS ONE, 2014, 9, e95525.	1.1	116
4	Channel Evolution Model of Semiarid Stream Response to Urbanâ€Induced Hydromodification ¹ . Journal of the American Water Resources Association, 2012, 48, 722-744.	1.0	90
5	A functional flows approach to selecting ecologically relevant flow metrics for environmental flow applications. River Research and Applications, 2020, 36, 318-324.	0.7	89
6	Wadeable streams as widespread sources of benthic cyanotoxins in California, USA. Harmful Algae, 2015, 49, 105-116.	2.2	76
7	Stormwater runoff plumes observed by SeaWiFS radiometer in the Southern California Bight. Remote Sensing of Environment, 2005, 98, 494-510.	4.6	75
8	Watershed and land use–based sources of trace metals in urban storm water. Environmental Toxicology and Chemistry, 2008, 27, 277-287.	2.2	75
9	WATERSHED-BASED SOURCES OF POLYCYCLIC AROMATIC HYDROCARBONS IN URBAN STORM WATER. Environmental Toxicology and Chemistry, 2006, 25, 373.	2.2	74
10	Pre- and post-fire pollutant loads in an urban fringe watershed in Southern California. Environmental Monitoring and Assessment, 2013, 185, 10131-10145.	1.3	67
11	Cryptic biodiversity in streams: a comparison of macroinvertebrate communities based on morphological and DNA barcode identifications. Freshwater Science, 2014, 33, 312-324.	0.9	65
12	Stormwater contaminant loading following southern California wildfires. Environmental Toxicology and Chemistry, 2012, 31, 2625-2638.	2.2	62
13	Evaluating the Effectiveness of Best Management Practices Using Dynamic Modeling. Journal of Environmental Engineering, ASCE, 2008, 134, 628-639.	0.7	59
14	Dissolved oxygen dynamics in a eutrophic estuary, Upper Newport Bay, California. Estuarine, Coastal and Shelf Science, 2009, 82, 139-151.	0.9	57
15	Evaluating Ethanol-based Sample Preservation to Facilitate Use of DNA Barcoding in Routine Freshwater Biomonitoring Programs Using Benthic Macroinvertebrates. PLoS ONE, 2013, 8, e51273.	1.1	56
16	Does DNA barcoding improve performance of traditional stream bioassessment metrics?. Freshwater Science, 2014, 33, 302-311.	0.9	56
17	Bioassessment in complex environments: designing an index for consistent meaning in different settings. Freshwater Science, 2016, 35, 249-271.	0.9	55
18	A PRACTICAL GUIDE FOR THE DEVELOPMENT OF A WETLAND ASSESSMENT METHOD: THE CALIFORNIA EXPERIENCE. Journal of the American Water Resources Association, 2006, 42, 157-175.	1.0	53

#	Article	IF	CITATIONS
19	Validation of a wetland Rapid Assessment Method: Use of EPA's level 1-2-3 framework for method testing and refinement. Wetlands, 2009, 29, 648-665.	0.7	50
20	Integrating intermittent streams into watershed assessments: applicability of an index of biotic integrity. Freshwater Science, 2014, 33, 459-474.	0.9	46
21	Fecal indicator bacteria (FIB) levels during dry weather from Southern California reference streams. Environmental Monitoring and Assessment, 2009, 155, 477-492.	1.3	45
22	How effective has the Clean Water Act been at reducing pollutant mass emissions to the Southern California Bight over the past 35Âyears?. Environmental Monitoring and Assessment, 2009, 154, 413-426.	1.3	44
23	Ecosystem response to regulatory and management actions: The southern California experience in long-term monitoring. Marine Pollution Bulletin, 2009, 59, 91-100.	2.3	41
24	Historical Ecology as a Tool for Assessing Landscape Change and Informing Wetland Restoration Priorities. Wetlands, 2010, 30, 589-601.	0.7	41
25	Development and comparison of stream indices of biotic integrity using diatoms vs. non-diatom algae vs. a combination. Journal of Applied Phycology, 2014, 26, 433-450.	1.5	41
26	Evaluating the adequacy of a reference-site pool for ecological assessments in environmentally complex regions. Freshwater Science, 2016, 35, 237-248.	0.9	41
27	Levels and patterns of fecal indicator bacteria in stormwater runoff from homogenous land use sites and urban watersheds. Journal of Water and Health, 2011, 9, 279-290.	1.1	38
28	Framework and Tool for Rapid Assessment of Stream Susceptibility to Hydromodification ¹ . Journal of the American Water Resources Association, 2012, 48, 788-808.	1.0	37
29	Influence of geologic setting on slope wetland hydrodynamics. Wetlands, 2004, 24, 244-260.	0.7	36
30	Microcystin Prevalence throughout Lentic Waterbodies in Coastal Southern California. Toxins, 2017, 9, 231.	1.5	36
31	Cumulative impacts of Section 404 Clean Water Act permitting on the riparian habitat of the Santa Margarita, California Watershed. Wetlands, 1998, 18, 393-408.	0.7	34
32	Spatial and temporal patterns of remotely-sensed and field-measured rainfall in southern California. Remote Sensing of Environment, 2005, 96, 228-245.	4.6	33
33	Tidal asymmetry and residual sediment transport in a short tidal basin under sea level rise. Advances in Water Resources, 2018, 121, 1-8.	1.7	33
34	Dry Weather Water Quality Loadings in Arid, Urban Watersheds of the Los Angeles Basin, California, USA. Journal of the American Water Resources Association, 2007, 43, 398-413.	1.0	32
35	Comparison of four species-delimitation methods applied to a DNA barcode data set of insect larvae for use in routine bioassessment. Freshwater Science, 2014, 33, 338-348.	0.9	31
36	Natural Catchments as Sources of Background Levels of Storm-Water Metals, Nutrients, and Solids. Journal of Environmental Engineering, ASCE, 2008, 134, 961-973.	0.7	30

#	Article	IF	Citations
37	PROFILE: Wetland Mitigation Banking: A Framework for Crediting and Debiting. Environmental Management, 2000, 26, 233-250.	1.2	28
38	Dry-Weather Metals and Bacteria Loading in an Arid, Urban Watershed: Ballona Creek, California. Water, Air, and Soil Pollution, 2005, 164, 367-382.	1.1	26
39	Metals and bacteria partitioning to various size particles in Ballona creek storm water runoff. Environmental Toxicology and Chemistry, 2013, 32, 320-328.	2.2	25
40	Application of regional flowâ€ecology relationships to inform watershed management decisions: Application of the ELOHA framework in the San Diego River watershed, California, USA. Ecohydrology, 2017, 10, e1869.	1.1	24
41	Tools for managing hydrologic alteration on a regional scale: Setting targets to protect stream health. Freshwater Biology, 2018, 63, 786-803.	1.2	24
42	Evaluating and managing environmental water regimes in a waterâ€scarce and uncertain future. Freshwater Biology, 2018, 63, 733-737.	1.2	24
43	Translational Molecular Ecology in practice: Linking DNA-based methods to actionable marine environmental management. Science of the Total Environment, 2020, 744, 140780.	3.9	24
44	Performance of Two Southern California Benthic Community Condition Indices Using Species Abundance and Presence-Only Data: Relevance to DNA Barcoding. PLoS ONE, 2012, 7, e40875.	1.1	23
45	Using alpha, beta, and zeta diversity in describing the health of streamâ€based benthic macroinvertebrate communities. Ecological Applications, 2019, 29, e01896.	1.8	23
46	Advancing the Science of Environmental Flow Management for Protection of Temporarily Closed Estuaries and Coastal Lagoons. Water (Switzerland), 2021, 13, 595.	1.2	23
47	The California Environmental Flows Framework: Meeting the Challenges of Developing a Large-Scale Environmental Flows Program. Frontiers in Environmental Science, 2021, 9, .	1.5	22
48	Estimating the Variability and Confidence of Land Use and Imperviousness Relationships at a Regional Scale ¹ . Journal of the American Water Resources Association, 2008, 44, 996-1008.	1.0	21
49	Tools for managing hydrologic alteration on a regional scale: Estimating changes in flow characteristics at ungauged sites. Freshwater Biology, 2018, 63, 769-785.	1.2	21
50	Evaluating regional resiliency of coastal wetlands to sea level rise through hypsometryâ€based modeling. Global Change Biology, 2019, 25, 78-92.	4.2	21
51	Barriers and opportunities for beneficial reuse of sediment to support coastal resilience. Ocean and Coastal Management, 2020, 195, 105287.	2.0	20
52	Application of color infrared aerial photography to assess macroalgal distribution in an eutrophic estuary, Upper Newport Bay, California. Estuaries and Coasts, 2007, 30, 855-868.	1.0	17
53	A rapid impact assessment method for use in a regulatory context. Wetlands, 1998, 18, 379-392.	0.7	16
54	Beyond Metrics? The Role of Hydrologic Baseline Archetypes in Environmental Water Management. Environmental Management, 2018, 62, 678-693.	1.2	16

#	Article	IF	CITATIONS
55	Predictive biological indices for algae populations in diverse stream environments. Ecological Indicators, 2020, 119, 106421.	2.6	15
56	Targeted hydrologic model calibration to improve prediction of ecologically-relevant flow metrics. Journal of Hydrology, 2019, 573, 546-556.	2.3	12
57	Establishing Targets for Regional Coastal Wetland Restoration Planning Using Historical Ecology and Future Scenario Analysis: The Past, Present, Future Approach. Estuaries and Coasts, 2020, 43, 207-222.	1.0	12
58	Effects of Elevated Sea Levels and Waves on Southern California Estuaries During the 2015–2016 El Niño. Estuaries and Coasts, 2020, 43, 256-271.	1.0	12
59	LANDSCAPE-SCALE ANALYSIS AND MANAGEMENT OF CUMULATIVE IMPACTS TO RIPARIAN ECOSYSTEMS: PAST, PRESENT, AND FUTURE. Journal of the American Water Resources Association, 2001, 37, 1597-1614.	1.0	11
60	Reachâ€Scale Geomorphic and Biological Effects of Localized Streambank Armoring. Journal of the American Water Resources Association, 2013, 49, 780-792.	1.0	11
61	Intermittent Estuaries: Linking Hydro-geomorphic Context to Climate Change Resilience. Journal of Coastal Research, 2016, 75, 133-137.	0.1	10
62	Land-Use-Based Sources of Pollutants in Urban Storm Water. Proceedings of the Water Environment Federation, 2007, 2007, 700-722.	0.0	9
63	Dry Weather Flow Contribution of Metals, Nutrients, and Solids from Natural Catchments. Water, Air, and Soil Pollution, 2008, 190, 183-195.	1.1	9
64	Classification of California streams using combined deductive and inductive approaches: Setting the foundation for analysis of hydrologic alteration. Ecohydrology, 2017, 10, e1802.	1.1	9
65	Prioritizing management goals for stream biological integrity within the developed landscape context. Freshwater Science, 2019, 38, 883-898.	0.9	8
66	The impact of climate change induced alterations of streamflow and stream temperature on the distribution of riparian species. PLoS ONE, 2020, 15, e0242682.	1.1	8
67	Evaluating performance of stormwater sampling approaches using a dynamic watershed model. Environmental Monitoring and Assessment, 2011, 180, 283-302.	1.3	7
68	A framework for evaluating regional hydrologic sensitivity to climate change using archetypal watershed modeling. Hydrology and Earth System Sciences, 2013, 17, 3077-3094.	1.9	7
69	Integrating probabalistic and targeted compliance monitoring for comprehensive watershed assessment. Environmental Monitoring and Assessment, 2008, 144, 117-129.	1.3	6
70	Demonstration of an integrated watershed assessment using a three-tiered assessment framework. Wetlands Ecology and Management, 2011, 19, 459-474.	0.7	6
71	Identifying Functional Flow Linkages Between Stream Alteration and Biological Stream Condition Indices Across California. Frontiers in Environmental Science, 2022, 9, .	1.5	6
72	Selecting the optimum plot size for a California design-based stream and wetland mapping program. Environmental Monitoring and Assessment, 2014, 186, 2599-2608.	1.3	5

#	Article	IF	Citations
73	Multi-decadal simulation of estuarine sedimentation under sea level rise with a response-surface surrogate model. Advances in Water Resources, 2021, 150, 103876.	1.7	5
74	Simulating the thermal impact of substrate temperature on ecological restoration in shallow urban rivers. Journal of Environmental Management, 2021, 289, 112560.	3.8	5
75	Continuous In Situ Characterization of Particulate Sizes in Urban Stormwater: Method Testing and Refinement. Journal of Environmental Engineering, ASCE, 2012, 138, 673-679.	0.7	4
76	Evaluation of Design-Based Sampling Options for Monitoring Stream and Wetland Extent and Distribution in California. Wetlands, 2013, 33, 717-725.	0.7	4
77	Governance issues in developing and implementing offsets for water management benefits: Can preliminary evaluation guide implementation effectiveness?. Wiley Interdisciplinary Reviews: Water, 2015, 2, 121-130.	2.8	4
78	Transferability of bioassessment indices among water body types and ecoregions: A California experiment in wetland assessment. Ecological Indicators, 2017, 81, 65-73.	2.6	4
79	Environmental predictors of stream flow in semi-arid watersheds for biological assessments. Ecological Indicators, 2019, 104, 429-438.	2.6	4
80	Developing Ecological Flow Needs in a Highly Altered Region: Application of California Environmental Flows Framework in Southern California, USA. Frontiers in Environmental Science, 2022, 10, .	1.5	4
81	Predicting Hydromodification in Streams Using Nonlinear Memory-Based Algorithms in Southern California Streams. Journal of Water Resources Planning and Management - ASCE, 2018, 144, 04017079.	1.3	3
82	Modelling future changes to the hydrological and thermal regime of unaltered streams using projected changes in climate to support planning for sensitive species management. Ecohydrology, 2021, 14, e2299.	1.1	3
83	Dilution and Pollution: Assessing the Impacts of Water Reuse and Flow Reduction on Water Quality in the Los Angeles River Basin. ACS ES&T Water, 2022, 2, 1309-1319.	2.3	3
84	How accurate are probability-based estimates of wetland extent? Results of a California validation study. Wetlands Ecology and Management, 2016, 24, 347-356.	0.7	2
85	Development of Restoration Performance Curves for Streams in Southern California Using an Integrative Condition Index. Wetlands, 2017, 37, 289-299.	0.7	2
86	Improving Effective Impervious Estimates to Inform Stormwater Management. Water Resources Management, 2020, 34, 747-762.	1.9	2
87	Thermal Suitability of the Los Angeles River for Cold Water Resident and Migrating Fish Under Physical Restoration Alternatives. Frontiers in Environmental Science, 2022, 9, .	1.5	2
88	Application of Flow-Ecology Analysis to Inform Prioritization for Stream Restoration and Management Actions. Frontiers in Environmental Science, 2022, 9, .	1.5	2
89	Prioritizing Stream Protection, Restoration and Management Actions Using Landscape Modeling and Spatial Analysis. Water (Switzerland), 2022, 14, 1375.	1.2	2
90	Evaluating Alternative Temporal Survey Designs for Monitoring Wetland Area and Detecting Changes Over Time in California. Journal of the American Water Resources Association, 2015, 51, 388-399.	1.0	1

#	Article	IF	Citations
91	CO-DEVELOPMENT OF COASTAL SEDIMENT MANAGEMENT APPROACHES IN SOCIAL ECOLOGICAL SYSTEMS IN SOUTHERN CALIFORNIA. , 2019, , .		1
92	A Study of the Compatibility of Habitat and Water Quality Enhancement Objectives in Urban Wetlands of Southern California, USA. Proceedings of the Water Environment Federation, 2007, 2007, 7169-7200.	0.0	0
93	Testing the Accuracy of Three Empirical Equations for Determining the Effective Impervious Area in Southern California. , $2018, , .$		0
94	California Rapid Assessment Method for Wetlands and Riparian Areas (CRAM)., 2018, , 353-361.		0
95	Watershed and Land Use-Based Sources of Trace Metals in Urban Storm Water. Environmental Toxicology and Chemistry, 2007, preprint, 1.	2.2	0
96	Assessing Biological Impacts from Storm Flow Diversions: A Case Study. , 2020, , .		0
97	Title is missing!. , 2020, 15, e0242682.		O
98	Title is missing!. , 2020, 15, e0242682.		0
99	Title is missing!. , 2020, 15, e0242682.		0
100	Title is missing!. , 2020, 15, e0242682.		0