
Nicholas J Youngman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4659765/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coagulotoxic Cobras: Clinical Implications of Strong Anticoagulant Actions of African Spitting Naja Venoms That Are Not Neutralised by Antivenom but Are by LY315920 (Varespladib). Toxins, 2018, 10, 516.	3.4	75
2	A Taxon-Specific and High-Throughput Method for Measuring Ligand Binding to Nicotinic Acetylcholine Receptors. Toxins, 2019, 11, 600.	3.4	29
3	Varespladib (LY315920) neutralises phospholipase A2 mediated prothrombinase-inhibition induced by Bitis snake venoms. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2020, 236, 108818.	2.6	28
4	Venomous Landmines: Clinical Implications of Extreme Coagulotoxic Diversification and Differential Neutralization by Antivenom of Venoms within the Viperid Snake Genus Bitis. Toxins, 2019, 11, 422.	3.4	25
5	Mud in the blood: Novel potent anticoagulant coagulotoxicity in the venoms of the Australian elapid snake genus Denisonia (mud adders) and relative antivenom efficacy. Toxicology Letters, 2019, 302, 1-6.	0.8	21
6	Clinical implications of convergent procoagulant toxicity and differential antivenom efficacy in Australian elapid snake venoms. Toxicology Letters, 2019, 316, 171-182.	0.8	20
7	Anticoagulant activity of black snake (Elapidae: Pseudechis) venoms: Mechanisms, potency, and antivenom efficacy. Toxicology Letters, 2020, 330, 176-184.	0.8	20
8	Anticoagulant Micrurus venoms: Targets and neutralization. Toxicology Letters, 2021, 337, 91-97.	0.8	14
9	Assessing the Binding of Venoms from Aquatic Elapids to the Nicotinic Acetylcholine Receptor Orthosteric Site of Different Prey Models. International Journal of Molecular Sciences, 2020, 21, 7377.	4.1	12
10	Trimeresurus albolabris snakebite treatment implications arising from ontogenetic venom comparisons of anticoagulant function, and antivenom efficacy. Toxicology Letters, 2020, 327, 2-8.	0.8	12
11	A Web of Coagulotoxicity: Failure of Antivenom to Neutralize the Destructive (Non-Clotting) Fibrinogenolytic Activity of Loxosceles and Sicarius Spider Venoms. Toxins, 2020, 12, 91.	3.4	11
12	Widespread and Differential Neurotoxicity in Venoms from the Bitis Genus of Viperid Snakes. Neurotoxicity Research, 2021, 39, 697-704.	2.7	11
13	Utilising venom activity to infer dietary composition of the Kenyan horned viper (Bitis worthingtoni). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2021, 240, 108921.	2.6	9
14	Getting stoned: Characterisation of the coagulotoxic and neurotoxic effects of reef stonefish (Synanceia verrucosa) venom. Toxicology Letters, 2021, 346, 16-22.	0.8	9
15	Differential coagulotoxic and neurotoxic venom activity from species of the arboreal viperid snake genus Bothriechis (palm-pitvipers). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2022, 256, 109326.	2.6	6
16	Evidence for Resistance to Coagulotoxic Effects of Australian Elapid Snake Venoms by Sympatric Prey (Blue Tongue Skinks) but Not by Predators (Monitor Lizards). Toxins, 2021, 13, 590.	3.4	4
17	Efficacy and Limitations of Chemically Diverse Small-Molecule Enzyme-Inhibitors against the Synergistic Coagulotoxic Activities of Bitis Viper Venoms. Molecules, 2022, 27, 1733.	3.8	3
18	Cloud serpent coagulotoxicity: The biochemical mechanisms underpinning the anticoagulant actions of Mixcoatlus and Ophryacus venoms. Toxicon, 2022, 211, 44-49.	1.6	2

#	Article	IF	CITATIONS
19	The relative efficacy of chemically diverse small-molecule enzyme-inhibitors against anticoagulant activities of Black Snake (Pseudechis spp.) venoms. Toxicology Letters, 2022, 366, 26-32.	0.8	1
20	Untangling interactions between Bitis vipers and their prey using coagulotoxicity against diverse vertebrate plasmas. Toxicon, 2022, 216, 37-44.	1.6	0