
Taku Hasobe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4659482/publications.pdf Version: 2024-02-01

TAKIL HASORE

#	Article	IF	CITATIONS
1	Photovoltaic Cells Using Composite Nanoclusters of Porphyrins and Fullerenes with Gold Nanoparticles. Journal of the American Chemical Society, 2005, 127, 1216-1228.	6.6	454
2	Graphene oxide with covalently linked porphyrin antennae: Synthesis, characterization and photophysical properties. Journal of Materials Chemistry, 2011, 21, 109-117.	6.7	232
3	Supramolecular nanoarchitectures for light energy conversion. Physical Chemistry Chemical Physics, 2010, 12, 44-57.	1.3	194
4	Ordered Assembly of Protonated Porphyrin Driven by Single-Wall Carbon Nanotubes. J- and H-Aggregates to Nanorods. Journal of the American Chemical Society, 2005, 127, 11884-11885.	6.6	190
5	Organized Assemblies of Single Wall Carbon Nanotubes and Porphyrin for Photochemical Solar Cells:Â Charge Injection from Excited Porphyrin into Single-Walled Carbon Nanotubesâ€. Journal of Physical Chemistry B, 2006, 110, 25477-25484.	1.2	180
6	Enhancement of Light-Energy Conversion Efficiency by Multi-Porphyrin Arrays of Porphyrinâ^'Peptide Oligomers with Fullerene Clusters. Journal of Physical Chemistry B, 2005, 109, 19-23.	1.2	175
7	Quaternary Self-Organization of Porphyrin and Fullerene Units by Clusterization with Gold Nanoparticles on SnO2Electrodes for Organic Solar Cells. Journal of the American Chemical Society, 2003, 125, 14962-14963.	6.6	173
8	Large Photocurrent Generation of Gold Electrodes Modified with [60]Fullerene-Linked Oligothiophenes Bearing a Tripodal Rigid Anchor. Journal of the American Chemical Society, 2002, 124, 532-533.	6.6	168
9	Supramolecular Photovoltaic Cells Based on Composite Molecular Nanoclusters:Â Dendritic Porphyrin and C60, Porphyrin Dimer and C60, and Porphyrinâ°'C60Dyad. Journal of Physical Chemistry B, 2004, 108, 12865-12872.	1.2	153
10	Organic solar cells. Supramolecular composites of porphyrins and fullerenes organized by polypeptide structures as light harvesters. Journal of Materials Chemistry, 2007, 17, 4160.	6.7	153
11	Supramolecular Photovoltaic Cells Using Porphyrin Dendrimers and Fullerene. Advanced Materials, 2004, 16, 975-979.	11.1	150
12	Light Energy Conversion Using Mixed Molecular Nanoclusters. Porphyrin and C60Cluster Films for Efficient Photocurrent Generation. Journal of Physical Chemistry B, 2003, 107, 12105-12112.	1.2	143
13	Long-Lived Triplet Excited States of Bent-Shaped Pentacene Dimers by Intramolecular Singlet Fission. Journal of Physical Chemistry A, 2016, 120, 1867-1875.	1.1	133
14	Stacked-Cup Carbon Nanotubes for Photoelectrochemical Solar Cells. Angewandte Chemie - International Edition, 2006, 45, 755-759.	7.2	120
15	Zinc Phthalocyanine–Graphene Hybrid Material for Energy Conversion: Synthesis, Characterization, Photophysics, and Photoelectrochemical Cell Preparation. Journal of Physical Chemistry C, 2012, 116, 20564-20573.	1.5	110
16	Sensitive Efficiency of Photoinduced Electron Transfer to Band Gaps of Semiconductive Single-Walled Carbon Nanotubes with Supramolecularly Attached Zinc Porphyrin Bearing Pyrene Glues. Journal of the American Chemical Society, 2010, 132, 8158-8164.	6.6	109
17	Porphyrin-Based Supramolecular Nanoarchitectures for Solar Energy Conversion. Journal of Physical Chemistry Letters, 2013, 4, 1771-1780.	2.1	101
18	Highly Fluorescent [7]Carbohelicene Fused by Asymmetric 1,2-Dialkyl-Substituted Quinoxaline for Circularly Polarized Luminescence and Electroluminescence. Journal of Physical Chemistry C, 2015, 119, 13937-13947.	1.5	101

Τακύ Ηαςόβε

#	Article	IF	CITATIONS
19	Siloxy Group-Induced Highly Efficient Room Temperature Phosphorescence with Long Lifetime. Journal of Physical Chemistry C, 2016, 120, 11631-11639.	1.5	95
20	Fullerene-encapsulated porphyrin hexagonal nanorods. An anisotropic donor–acceptor composite for efficient photoinduced electron transfer and light energy conversion. Chemical Communications, 2008, , 3372.	2.2	84
21	Synthetic Control of the Excited‣tate Dynamics and Circularly Polarized Luminescence of Fluorescent "Push–Pull―Tetrathia[9]helicenes. Chemistry - A European Journal, 2016, 22, 4263-4273.	1.7	83
22	Supramolecular Structures and Photoelectronic Properties of the Inclusion Complex of a Cyclic Freeâ€Base Porphyrin Dimer and C ₆₀ . Chemistry - A European Journal, 2010, 16, 11611-11623.	1.7	79
23	Multiexciton Dynamics Depending on Intramolecular Orientations in Pentacene Dimers: Recombination and Dissociation of Correlated Triplet Pairs. Journal of Physical Chemistry Letters, 2018, 9, 3354-3360.	2.1	73
24	Sonication-assisted supramolecular nanorods of meso-diaryl-substituted porphyrins. Chemical Communications, 2008, , 724.	2.2	70
25	Nanostructured assembly of porphyrin clusters for light energy conversion. Journal of Materials Chemistry, 2003, 13, 2515.	6.7	67
26	Supramolecular nanostructured assemblies of different types of porphyrins with fullerene using TiO2 nanoparticles for light energy conversion. Tetrahedron, 2006, 62, 1937-1946.	1.0	67
27	Control of open-circuit voltage in organic photovoltaic cells by inserting an ultrathin metal-phthalocyanine layer. Applied Physics Letters, 2007, 91, .	1.5	67
28	Photoinduced Charge Separation in a Ferroceneâ^'Aluminum(III) Porphyrinâ^'Fullerene Supramolecular Triad. Journal of Physical Chemistry B, 2010, 114, 14348-14357.	1.2	64
29	Synthetic Control of Photophysical Process and Circularly Polarized Luminescence of [5]Carbohelicene Derivatives Substituted by Maleimide Units. Journal of Physical Chemistry C, 2016, 120, 7860-7869.	1.5	63
30	Photo- and electro-functional self-assembled architectures of porphyrins. Physical Chemistry Chemical Physics, 2012, 14, 15975.	1.3	62
31	Concentration Effects of Porphyrin Monolayers on the Structure and Photoelectrochemical Properties of Mixed Self-Assembled Monolayers of Porphyrin and Alkanethiol on Gold Electrodes. Langmuir, 2001, 17, 4925-4931.	1.6	58
32	Enhancement of Light Harvesting and Photocurrent Generation by ITO Electrodes Modified with meso,meso-Linked Porphyrin Oligomers. Nano Letters, 2003, 3, 409-412.	4.5	57
33	Controlled Excited-State Dynamics and Enhanced Fluorescence Property of Tetrasulfone[9]helicene by a Simple Synthetic Process. Journal of Physical Chemistry C, 2016, 120, 7421-7427.	1.5	55
34	Characterization and Photoelectrochemical Properties of Nanostructured Thin Film Composed of Carbon Nanohorns Covalently Functionalized with Porphyrins. Journal of Physical Chemistry C, 2008, 112, 15735-15741.	1.5	52
35	Carbon Nanohorn–Porphyrin Dimer Hybrid Material for Enhancing Light-Energy Conversion. Journal of Physical Chemistry C, 2012, 116, 9439-9449.	1.5	52
36	Diameterâ€Sorted SWCNT–Porphyrin and SWCNT–Phthalocyanine Conjugates for Lightâ€Energy Harvesting. ChemPhysChem, 2011, 12, 2266-2273.	1.0	48

Τακ<mark>υ</mark> Ηαsobe

#	Article	IF	CITATIONS
37	Preparation and Photophysical and Photoelectrochemical Properties of Supramolecular Porphyrin Nanorods Structurally Controlled by Encapsulated Fullerene Derivatives. Journal of Physical Chemistry C, 2009, 113, 18369-18378.	1.5	47
38	Sequential Charge Separation in Two Axially Linked Phenothiazineâ^'Aluminum(III) Porphyrinâ^'Fullerene Triads. Journal of Physical Chemistry A, 2011, 115, 709-717.	1.1	47
39	Photoconductivity of Porphyrin Nanochannels Composed of Diprotonated Porphyrin Dications with Saddle Distortion and Electron Donors. Chemistry of Materials, 2008, 20, 7492-7500.	3.2	46
40	Structural and Photophysical Properties of Self-Assembled Porphyrin Nanoassemblies Organized by Ethylene Glycol Derivatives. Journal of Physical Chemistry C, 2008, 112, 19209-19216.	1.5	46
41	Photochemical Charge Separation in Supramolecular Phthalocyanineâ^Multifullerene Conjugates Assembled by Crown Ether-Alkyl Ammonium Cation Interactions. Journal of Physical Chemistry A, 2010, 114, 10951-10959.	1.1	46
42	A Carbon Nanohornï£įPorphyrin Supramolecular Assembly for Photoinduced Electronâ€Transfer Processes. Chemistry - A European Journal, 2010, 16, 10752-10763.	1.7	45
43	Enhanced photoelectrochemical performance of composite photovoltaic cells of Li+@C60–sulphonated porphyrin supramolecular nanoclusters. Chemical Communications, 2013, 49, 4474.	2.2	45
44	Linkage Dependent Charge Separation and Charge Recombination in Porphyrin-Pyromellitimide-Fullerene Triads. Journal of Physical Chemistry A, 2002, 106, 2803-2814.	1.1	43
45	Photoelectrochemical Properties of Supramolecular Composite of Fullerene Nanoclusters and 9-Mesityl-10-carboxymethylacridinium Ion on SnO2. Organic Letters, 2004, 6, 3103-3106.	2.4	43
46	Organization of supramolecular assemblies of fullerene, porphyrin and fluorescein dye derivatives on TiO2 nanoparticles for light energy conversion. Chemical Physics, 2005, 319, 243-252.	0.9	43
47	Photoelectrochemistry of Stacked-Cup Carbon Nanotube Films. Tube-Length Dependence and Charge Transfer with Excited Porphyrin. Journal of Physical Chemistry C, 2007, 111, 16626-16634.	1.5	43
48	Photoinduced processes of the supramolecularly functionalized semi-conductive SWCNTs with porphyrinsvia ion-pairing interactions. Energy and Environmental Science, 2011, 4, 707-716.	15.6	43
49	Remarkable Enhancement of Photocatalytic Hydrogen Evolution Efficiency Utilizing An Internal Cavity of Supramolecular Porphyrin Hexagonal Nanocylinders Under Visible-Light Irradiation. Journal of Physical Chemistry C, 2013, 117, 4441-4449.	1.5	41
50	Significant Enhancement of Absorption and Luminescence Dissymmetry Factors in the Far-Red Region: A Zinc(II) Homoleptic Helicate Formed by a Pair of Achiral Dipyrromethene Ligands. Chemistry - A European Journal, 2018, 24, 16889-16894.	1.7	40
51	Spectroscopy and Photocurrent Generation in Nanostructured Thin Films of Porphyrin–Fullerene Dyad Clusters. Chemistry Letters, 2001, 30, 784-785.	0.7	39
52	Protonation-induced red-coloured circularly polarized luminescence of [5]carbohelicene fused by benzimidazole. Organic and Biomolecular Chemistry, 2016, 14, 6738-6743.	1.5	39
53	Photoinduced electron transfer in aqueous carbon nanotube/block copolymer/CdS hybrids: application in the construction of photoelectrochemical cells. Journal of Materials Chemistry, 2009, 19, 8990.	6.7	38
54	Enhanced Energy and Quantum Efficiencies of a Nanocrystalline Photoelectrochemical Cell Sensitized with a Donorâ´Acceptor Dyad Derived from Fluorescein. Journal of Physical Chemistry B, 2004, 108, 15200-15205.	1.2	37

#	Article	IF	CITATIONS
55	Drastic Difference in Lifetimes of the Charge-Separated State of the Formanilideâ^'Anthraquinone Dyad versus the Ferroceneâ^'Formanilideâ^'Anthraquinone Triad and Their Photoelectrochemical Properties of the Composite Films with Fullerene Clusters. Journal of Physical Chemistry A, 2005, 109, 4662-4670.	1.1	36
56	Shape- and Functionality-Controlled Organization of TiO2–Porphyrin–C60 Assemblies for Improved Performance of Photochemical Solar Cells. Chemistry - an Asian Journal, 2007, 2, 265-272.	1.7	36
57	Diameter dependent electron transfer in supramolecular nanohybrids of (6,5)- or (7,6)-enriched semiconducting SWCNT as donors and fullerene as acceptor. Chemical Communications, 2010, 46, 8749.	2.2	36
58	Organization of supramolecular assembly of 9-mesityl-10-carboxymethylacridinium ion and fullerene clusters on TiO2 nanoparticles for light energy conversion. Journal of Materials Chemistry, 2005, 15, 372.	6.7	35
59	High‥ield Excited Triplet States in Pentacene Selfâ€Assembled Monolayers on Gold Nanoparticles through Singlet Exciton Fission. Angewandte Chemie - International Edition, 2016, 55, 5230-5234.	7.2	35
60	Porphyrin and fullerene-based artificial photosynthetic materials for photovoltaics. Thin Solid Films, 2004, 451-452, 580-588.	0.8	33
61	Ultrafast photoinduced electron transfer in face-to-face charge-transfer π-complexes of planar porphyrins and hexaazatriphenylene derivatives. Chemical Science, 2015, 6, 1498-1509.	3.7	33
62	Systematic Control of Structural and Photophysical Properties of Ï€â€Extended Mono―and Bisâ€BODIPY Derivatives. Chemistry - A European Journal, 2020, 26, 316-325.	1.7	33
63	Quantitative Sequential Photoenergy Conversion Process from Singlet Fission to Intermolecular Two-Electron Transfers Utilizing Tetracene Dimer. ACS Energy Letters, 2019, 4, 26-31.	8.8	32
64	Synthesis and Photodynamics of Tetragermatetrathia[8]circulene. Organic Letters, 2018, 20, 304-307.	2.4	31
65	Electron-Transfer Reduction Properties and Excited-State Dynamics of Benzo[<i>ghi</i>]peryleneimide and Coroneneimide Derivatives. Journal of Physical Chemistry C, 2014, 118, 7710-7720.	1.5	30
66	Controlled Orientations of Neighboring Tetracene Units by Mixed Self-Assembled Monolayers on Gold Nanoclusters for High-Yield and Long-Lived Triplet Excited States through Singlet Fission. Journal of the American Chemical Society, 2019, 141, 14720-14727.	6.6	30
67	Synthesis of Tetrasilatetrathia[8]circulenes by a Fourfold Intramolecular Dehydrogenative Silylation of Câ^'H Bonds. Chemistry - A European Journal, 2017, 23, 6948-6952.	1.7	28
68	Formation of Oneâ€Dimensional Helical Columns and Excimerlike Excited States by Racemic Quinoxalineâ€Fused [7]Carbohelicenes in the Crystal. Chemistry - A European Journal, 2014, 20, 10099-10109.	1.7	27
69	The effect of a highly twisted C double bond on the electronic structures of 9,9′-bifluorenylidene derivatives in the ground and excited states. Organic Chemistry Frontiers, 2017, 4, 650-657.	2.3	26
70	Geometries and Terahertz Motions Driving Quintet Multiexcitons and Ultimate Triplet–Triplet Dissociations via the Intramolecular Singlet Fissions. Journal of Physical Chemistry B, 2020, 124, 9411-9419.	1.2	26
71	Multi-color light-emitting transistors composed of organic single crystals. Organic Electronics, 2013, 14, 2737-2742.	1.4	25
72	A Pentaceneâ€based Nanotube Displaying Enriched Electrochemical and Photochemical Activities. Angewandte Chemie, 2019, 131, 1127-1131.	1.6	25

#	Article	IF	CITATIONS
73	A Pentaceneâ€based Nanotube Displaying Enriched Electrochemical and Photochemical Activities. Angewandte Chemie - International Edition, 2019, 58, 1115-1119.	7.2	23
74	Preparation and structural control of metal coordination-assisted supramolecular architectures of porphyrins. Nanocubes to microrods. Chemical Communications, 2012, 48, 4441.	2.2	22
75	Systematic Control of the Excitedâ€State Dynamics and Carrierâ€Transport Properties of Functionalized Benzo[<i>ghi</i>]perylene and Coronene Derivatives. Chemistry - A European Journal, 2014, 20, 9081-9093.	1.7	22
76	Synergetic Role of Conformational Flexibility and Electronic Coupling for Quantitative Intramolecular Singlet Fission. Journal of Physical Chemistry C, 2021, 125, 18287-18296.	1.5	21
77	Structure and photoelectrochemical properties of ITO electrodes modified with self-assembled monolayers of meso, meso-linked porphyrin oligomers. Journal of Porphyrins and Phthalocyanines, 2003, 07, 296-312.	0.4	20
78	Implementation of redox gradients in hydrogen bonded complexes containing N,N-dimethylaniline, flavin and fullerene derivatives. Journal of Materials Chemistry, 2010, 20, 1457-1466.	6.7	20
79	Controllable Electronic Structures and Photoinduced Processes of Bayâ€Linked Perylenediimide Dimers and a Ferroceneâ€Linked Triad. Chemistry - A European Journal, 2016, 22, 9631-9641.	1.7	20
80	Supramolecular Singlet Fission of Pentacene Dimers within Polyaromatic Capsules. Journal of the American Chemical Society, 2021, 143, 9361-9367.	6.6	19
81	Fullerene-Based Supramolecular Nanoclusters with Poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylenevinylene] for Light Energy Conversion. Japanese Journal of Applied Physics, 2008, 47, 1223.	0.8	18
82	Controlling Open-Circuit Voltage of Organic Photovoltaic Cells by Inserting Thin Layer of Zn–Phthalocyanine at Pentacene/C60Interface. Japanese Journal of Applied Physics, 2008, 47, 1234-1237.	0.8	18
83	Synthesis and aggregate formation of triphenylene core-centered porphyrin hexamers. Chemical Communications, 2010, 46, 889-891.	2.2	18
84	An Air―and Waterâ€Stable B ₄ N ₄ â€Heteropentalene Serving as a Host Material for a Phosphorescent OLED. Angewandte Chemie - International Edition, 2021, 60, 23812-23818.	7.2	18
85	Porphyrin-Based Molecular Architectures for Light Energy Conversion. Molecular Crystals and Liquid Crystals, 2007, 471, 39-51.	0.4	17
86	Broadband Light Harvesting and Fast Charge Separation in Ordered Self-Assemblies of Electron Donor–Acceptor-Functionalized Graphene Oxide Layers for Effective Solar Energy Conversion. Journal of Physical Chemistry C, 2015, 119, 13488-13495.	1.5	17
87	Near-Infrared Photoelectrochemical Conversion via Photoinduced Charge Separation in Supramolecular Complexes of Anionic Phthalocyanines with Li+@C60. Journal of Physical Chemistry B, 2015, 119, 7690-7697.	1.2	17
88	Molecular nanoarchitectures composed of porphyrins and carbon nanomaterials for light energy conversion. Journal of Porphyrins and Phthalocyanines, 2011, 15, 301-311.	0.4	16
89	Efficient Near-Infrared Light-Driven Hydrogen Evolution Catalyzed by a Saddle-Distorted Porphyrin as a Photocatalyst. ACS Applied Energy Materials, 2020, 3, 3193-3197.	2.5	16
90	Molecular Design Strategy for High-Yield and Long-Lived Individual Doubled Triplet Excitons through Intramolecular Singlet Fission. ACS Energy Letters, 2022, 7, 390-400.	8.8	16

#	Article	IF	CITATIONS
91	Coronenetetraimideâ€Centered Cruciform Pentamers Containing Multiporphyrin Units: Synthesis and Sequential Photoinduced Energy―and Electronâ€Transfer Dynamics. Chemistry - A European Journal, 2015, 21, 11196-11205.	1.7	15
92	Control of local structures and photophysical properties of zinc porphyrin-based supramolecular assemblies structurally organized by regioselective ligand coordination. Physical Chemistry Chemical Physics, 2016, 18, 5453-5463.	1.3	15
93	Highâ€Yield Excited Triplet States in Pentacene Selfâ€Assembled Monolayers on Gold Nanoparticles through Singlet Exciton Fission. Angewandte Chemie, 2016, 128, 5316-5320.	1.6	14
94	Control of the electrochemical and photophysical properties of N-substituted benzo[ghi]perylene derivatives. Materials Chemistry Frontiers, 2017, 1, 2299-2308.	3.2	14
95	Highâ€Yield Generation of Triplet Excited States by an Efficient Sequential Photoinduced Process from Energy Transfer to Singlet Fission in Pentaceneâ€Modified CdSe/ZnS Quantum Dots. Chemistry - A European Journal, 2018, 24, 17062-17071.	1.7	13
96	Efficient photocatalytic proton-coupled electron-transfer reduction of O ₂ using a saddle-distorted porphyrin as a photocatalyst. Chemical Communications, 2019, 55, 4925-4928.	2.2	13
97	Electrochemical Properties and Excited-State Dynamics of Azaperylene Derivatives. Journal of Physical Chemistry B, 2020, 124, 9921-9930.	1.2	13
98	Enthalpy–Entropy Compensation Effect for Triplet Pair Dissociation of Intramolecular Singlet Fission in Phenylene Spacer-Bridged Hexacene Dimers. Journal of Physical Chemistry Letters, 2021, 12, 6457-6463.	2.1	13
99	Fast self-exchange electron transfer and delocalization of unpaired electron between zinc porphyrin radical cations and zinc porphyrins. Journal of Porphyrins and Phthalocyanines, 2003, 07, 328-336.	0.4	12
100	Ï€-Complex formation in electron-transfer reactions of porphyrins. Journal of Porphyrins and Phthalocyanines, 2004, 08, 191-200.	0.4	11
101	Photo-induced glycosylation using a diaryldisulfide as an organo-Lewis photoacid catalyst. Organic and Biomolecular Chemistry, 2020, 18, 851-855.	1.5	11
102	Graphene oxide–Li ⁺ @C ₆₀ donor–acceptor composites for photoenergy conversion. Physical Chemistry Chemical Physics, 2015, 17, 15732-15738.	1.3	10
103	Near-Unity Singlet Fission on a Quantum Dot Initiated by Resonant Energy Transfer. Journal of the American Chemical Society, 2021, 143, 17388-17394.	6.6	10
104	Photoinduced Processes of Supramolecular Nanoarrays Composed of Porphyrin and Benzo[<i>ghi</i>]perylenetriimide Units through Triple Hydrogen Bonds with Oneâ€Đimensional Columnar Phases. Chemistry - an Asian Journal, 2016, 11, 613-624.	1.7	9
105	Synthesis, Structural and Photophysical Properties of Pentacene Alkanethiolate Monolayer-Protected Gold Nanoclusters and Nanorods: Supramolecular Intercalation and Photoinduced Electron Transfer with C ₆₀ . Journal of Physical Chemistry C, 2017, 121, 9043-9052.	1.5	8
106	Inter- and Intramolecular Electron-Transfer Reduction Properties of Coronenediimide Derivatives via Photoinduced Processes. Journal of Physical Chemistry C, 2018, 122, 13333-13346.	1.5	8
107	Excimer Formation of Aryl lodides Chemisorbed on Gold Nanoparticles for the Significant Enhancement of Photoluminescence. Journal of Physical Chemistry Letters, 2020, 11, 1199-1203.	2.1	8
108	Organic-Inorganic Hybrid Molecular Architectures Utilizing Self-assembled Monolayers for Singlet Fission and Light Energy Conversion. Chemistry Letters, 2021, 50, 615-622.	0.7	7

#	Article	IF	CITATIONS
109	Tetraaryldiborane(4) Can Emit Dual Fluorescence Responding to the Structural Change around the B–B Bond. Angewandte Chemie - International Edition, 2022, 61, .	7.2	7
110	Photoelectrochemical properties of supramolecular composites of an anionic zinc chlorin and Li ⁺ @ C ₆₀ on SnO ₂ . Journal of Porphyrins and Phthalocyanines, 2014, 18, 982-990.	0.4	6
111	Concentration-dependent photophysical switching in mixed self-assembled monolayers of pentacene and perylenediimide on gold nanoclusters. Physical Chemistry Chemical Physics, 2018, 20, 8695-8706.	1.3	6
112	A Diprotonated Porphyrin as an Electron Mediator in Photoinduced Electron Transfer in Hydrogen-Bonded Supramolecular Assemblies. Journal of Physical Chemistry C, 2019, 123, 11529-11538.	1.5	6
113	Preparation and Photoelectrochemical Properties of Supramolecular Assemblies of Nanoscale Carbon Material Composites. ECS Journal of Solid State Science and Technology, 2013, 2, M3015-M3022.	0.9	5
114	Synthesis and Electrochemical and Photophysical Properties of Azaterrylene Derivatives. Chemistry - an Asian Journal, 2019, 14, 1754-1762.	1.7	5
115	An Air―and Water‧table B ₄ N ₄ â€Heteropentalene Serving as a Host Material for a Phosphorescent OLED. Angewandte Chemie, 2021, 133, 24005-24011.	1.6	5
116	Porphyrin hexamer with a triphenylene core unit: Spectroscopy, electrochemistry and controllable supramolecular formation. Journal of Porphyrins and Phthalocyanines, 2011, 15, 639-651.	0.4	4
117	Supramolecular photovoltaic cells utilizing inclusion complexes composed of Li ⁺ @ C ₆₀ and cyclic porphyrin dimer. Journal of Porphyrins and Phthalocyanines, 2015, 19, 242-250.	0.4	4
118	Supramolecular Porphyrin Nanorods for Light Energy Conversion. , 2015, , 475-491.		2
119	Room-Temperature Pentacene Fluids: Oligoethylene Glycol Substituent-Controlled Morphologies and Singlet Fission. Journal of Physical Chemistry B, 2020, 124, 11910-11918.	1.2	2
120	Carbon Nanomaterial–Based Molecular Architectures for Light Energy Conversion. World Scientific Series on Carbon Nanoscience, 2012, , 95-130.	0.1	1
121	Self-Assembled Composite Materials of Porphyrins for Optoelectronics. , 2012, , 499-536.		1
122	Structural Control of Fluorescent Helicates for Improved Circularly Polarized Luminescence Properties. , 2020, , 99-116.		1
123	Titelbild: Tetraaryldiborane(4) Can Emit Dual Fluorescence Responding to the Structural Change around the B–B Bond (Angew. Chem. 1/2022). Angewandte Chemie, 2022, 134, .	1.6	1
124	Ultrafast Singlet Fission and Efficient Carrier Transport in a Lamellar Assembly of Bis[(trialkoxyphenyl)ethynyl]pentacene. Journal of Physical Chemistry C, O, , .	1.5	1
125	Solid surface free energy analysis using inkjet droplets. Materials Research Society Symposia Proceedings, 2011, 1360, 151001.	0.1	0
126	Tetraaryldiborane(4) Can Emit Dual Fluorescence Responding to the Structural Change around the B–B Bond. Angewandte Chemie, 0, , .	1.6	0

#	Article	IF	CITATIONS
127	Efficient Singlet Fission in Acene-Based Molecular Assemblies. , 2020, , 275-285.		ο