David Drewry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/465947/publications.pdf

Version: 2024-02-01

55 2,826 27 48
papers citations h-index g-index

62 62 62 4355
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Non-canonical role of Hippo tumor suppressor serine/threonine kinase 3 STK3 in prostate cancer. Molecular Therapy, 2022, 30, 485-500.	8.2	17
2	Identification of Pyrimidine-Based Lead Compounds for Understudied Kinases Implicated in Driving Neurodegeneration. Journal of Medicinal Chemistry, 2022, 65, 1313-1328.	6.4	20
3	Identification of 4â€anilinoâ€quin(az)oline as a cell active Protein Kinase Novel 3 (PKN3) inhibitor chemotype. ChemMedChem, 2022, , .	3.2	2
4	Temozolomide-induced guanine mutations create exploitable vulnerabilities of guanine-rich DNA and RNA regions in drug-resistant gliomas. Science Advances, 2022, 8, .	10.3	7
5	New tools for carbohydrate sulfation analysis: heparan sulfate 2- <i>O</i> -sulfotransferase (HS2ST) is a target for small-molecule protein kinase inhibitors. Biochemical Journal, 2021, 475, 2417-2433.	3.7	17
6	The Kinase Chemogenomic Set (KCGS): An Open Science Resource for Kinase Vulnerability Identification. International Journal of Molecular Sciences, 2021, 22, 566.	4.1	62
7	Development of a potent and selective chemical probe for the pleiotropic kinase CK2. Cell Chemical Biology, 2021, 28, 546-558.e10.	5.2	62
8	Crowdsourced mapping of unexplored target space of kinase inhibitors. Nature Communications, 2021, 12, 3307.	12.8	41
9	Hinge Binder Scaffold Hopping Identifies Potent Calcium/Calmodulin-Dependent Protein Kinase Kinase 2 (CAMKK2) Inhibitor Chemotypes. Journal of Medicinal Chemistry, 2021, 64, 10849-10877.	6.4	22
10	Targeting Never-In-Mitosis-A Related Kinase 5 in Cancer: A Review. Current Medicinal Chemistry, 2021, 28, 6096-6109.	2.4	5
11	Synthesis and Evaluation of Novel 1,2,6-Thiadiazinone Kinase Inhibitors as Potent Inhibitors of Solid Tumors. Molecules, 2021, 26, 5911.	3.8	4
12	Design and Development of a Chemical Probe for Pseudokinase Ca2+/calmodulin-Dependent Ser/Thr Kinase. Journal of Medicinal Chemistry, 2021, 64, 14358-14376.	6.4	3
13	SGC-AAK1-1: A Chemical Probe Targeting AAK1 and BMP2K. ACS Medicinal Chemistry Letters, 2020, 11, 340-345.	2.8	35
14	Concise, gram-scale synthesis of furo [2,3-b] pyridines with functional handles for chemoselective cross-coupling. Tetrahedron Letters, 2020, 61, 152353.	1.4	5
15	A Chemical Probe for Dark Kinase STK17B Derives Its Potency and High Selectivity through a Unique P-Loop Conformation. Journal of Medicinal Chemistry, 2020, 63, 14626-14646.	6.4	17
16	Crystal Structure and Inhibitor Identifications Reveal Targeting Opportunity for the Atypical MAPK Kinase ERK3. International Journal of Molecular Sciences, 2020, 21, 7953.	4.1	7
17	PKIS deep dive yields a chemical starting point for dark kinases and a cell active BRSK2 inhibitor. Scientific Reports, 2020, 10, 15826.	3.3	6
18	CDK12 inhibition reduces abnormalities in cells from patients with myotonic dystrophy and in a mouse model. Science Translational Medicine, 2020, 12, .	12.4	12

#	Article	IF	Citations
19	Quantifying CDK inhibitor selectivity in live cells. Nature Communications, 2020, 11, 2743.	12.8	64
20	Defining the Neural Kinome: Strategies and Opportunities for Small Molecule Drug Discovery to Target Neurodegenerative Diseases. ACS Chemical Neuroscience, 2020, 11, 1871-1886.	3.5	27
21	Identifying the Target of an Antiparasitic Compound in <i>Toxoplasma</i> Using Thermal Proteome Profiling. ACS Chemical Biology, 2020, 15, 1801-1807.	3.4	30
22	In Depth Analysis of Kinase Cross Screening Data to Identify CAMKK2 Inhibitory Scaffolds. Molecules, 2020, 25, 325.	3.8	22
23	Binding and structural analyses of potent inhibitors of the human Ca2+/calmodulin dependent protein kinase kinase 2 (CAMKK2) identified from a collection of commercially-available kinase inhibitors. Scientific Reports, 2019, 9, 16452.	3.3	16
24	Chemical proteomics reveals target selectivity of clinical Jak inhibitors in human primary cells. Scientific Reports, 2019, 9, 14159.	3.3	39
25	CaMKK2 in myeloid cells is a key regulator of the immune-suppressive microenvironment in breast cancer. Nature Communications, 2019, 10, 2450.	12.8	72
26	Design of a Cyclin G Associated Kinase (GAK)/Epidermal Growth Factor Receptor (EGFR) Inhibitor Set to Interrogate the Relationship of EGFR and GAK in Chordoma. Journal of Medicinal Chemistry, 2019, 62, 4772-4778.	6.4	34
27	SGC-GAK-1: A Chemical Probe for Cyclin G Associated Kinase (GAK). Journal of Medicinal Chemistry, 2019, 62, 2830-2836.	6.4	56
28	In depth analysis of kinase cross screening data to identify chemical starting points for inhibition of the Nek family of kinases. MedChemComm, 2018, 9, 44-66.	3.4	17
29	Covalent inhibitors of EGFR family protein kinases induce degradation of human Tribbles 2 (TRIB2) pseudokinase in cancer cells. Science Signaling, 2018, 11, .	3.6	66
30	New tools for evaluating protein tyrosine sulfation: tyrosylprotein sulfotransferases (TPSTs) are novel targets for RAF protein kinase inhibitors. Biochemical Journal, 2018, 475, 2435-2455.	3.7	33
31	1,2,6-Thiadiazinones as Novel Narrow Spectrum Calcium/Calmodulin-Dependent Protein Kinase Kinase 2 (CaMKK2) Inhibitors. Molecules, 2018, 23, 1221.	3.8	23
32	Progress towards a public chemogenomic set for protein kinases and a call for contributions. PLoS ONE, 2017, 12, e0181585.	2.5	131
33	Structure-Bioactivity Relationship for Benzimidazole Thiophene Inhibitors of Polo-Like Kinase 1 (PLK1), a Potential Drug Target in Schistosoma mansoni. PLoS Neglected Tropical Diseases, 2016, 10, e0004356.	3.0	56
34	Comprehensive characterization of the Published Kinase Inhibitor Set. Nature Biotechnology, 2016, 34, 95-103.	17.5	289
35	Discovery and Characterization of GSK2801, a Selective Chemical Probe for the Bromodomains BAZ2A and BAZ2B. Journal of Medicinal Chemistry, 2016, 59, 1410-1424.	6.4	133
36	Discovery of I-BRD9, a Selective Cell Active Chemical Probe for Bromodomain Containing Protein 9 Inhibition. Journal of Medicinal Chemistry, 2016, 59, 1425-1439.	6.4	177

#	Article	IF	CITATIONS
37	Seeding Collaborations to Advance Kinase Science with the GSK Published Kinase Inhibitor Set (PKIS). Current Topics in Medicinal Chemistry, 2014, 14, 340-342.	2.1	95
38	A public-private partnership to unlock the untargeted kinome. Nature Chemical Biology, 2013, 9, 3-6.	8.0	141
39	Profile of the GSK Published Protein Kinase Inhibitor Set Across ATP-Dependent and-Independent Luciferases: Implications for Reporter-Gene Assays. PLoS ONE, 2013, 8, e57888.	2.5	65
40	<i>Plasmodium</i> kinases as targets for new-generation antimalarials. Future Medicinal Chemistry, 2012, 4, 2295-2310.	2.3	85
41	Enhancements of screening collections to address areas of unmet medical need: an industry perspective. Current Opinion in Chemical Biology, 2010, 14, 289-298.	6.1	121
42	Discovery of GSK1070916, a Potent and Selective Inhibitor of Aurora B/C Kinase. Journal of Medicinal Chemistry, 2010, 53, 3973-4001.	6.4	94
43	A Rapid Three-Component MgI2-Mediated Synthesis of 3,3-Pyrollidinyl Spirooxindoles. Journal of Organic Chemistry, 2010, 75, 6693-6695.	3.2	41
44	Discovery of thiophene inhibitors of polo-like kinase. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 1018-1021.	2.2	31
45	Assessment of Chemical Coverage of Kinome Space and Its Implications for Kinase Drug Discovery. Journal of Medicinal Chemistry, 2008, 51, 7898-7914.	6.4	158
46	Kinase-Targeted Library Design through the Application of the PharmPrint Methodology. Journal of Chemical Information and Modeling, 2008, 48, 2395-2403.	5.4	19
47	Array synthesis of progesterone receptor antagonists: 3-Aryl-1,2-diazepines. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 3777-3779.	2.2	16
48	New synthetic approaches to estrogen receptor modulators: imidazo[1,2-a]pyridines. Tetrahedron Letters, 2003, 44, 4077-4080.	1.4	19
49	High-Throughput Manual Parallel Synthesis Using SynPhase Crowns and Lanterns. ACS Combinatorial Science, 2003, 5, 110-117.	3.3	7
50	2-(Anilinomethyl)imidazolines as $\hat{l}\pm 1A$ Adrenergic Receptor Agonists: $2\hat{a}$ €²-Heteroaryl and $2\hat{a}$ €²-Oxime Ether Series. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 575-579.	2.2	11
51	2-Amino-4,6-diarylpyridines as novel ligands for the estrogen receptor. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1939-1942.	2.2	32
52	Solid-phase synthesis of 2-aminoimidazolinones. Tetrahedron Letters, 2000, 41, 6989-6992.	1.4	29
53	Solid-supported reagents in organic synthesis. , 1999, 19, 97-148.		132
54	Solid-phase synthesis of trisubstituted guanidines. Tetrahedron Letters, 1997, 38, 3377-3380.	1.4	76

#	Article	IF	CITATIONS
55	Rapid synthesis of novel dipeptide inhibitors of human collagenase and gelatinase using solid phase chemistry. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 1905-1910.	2.2	18