
Kumudika de Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/465907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Does a Th1 over Th2 dominancy really exist in the early stages of Mycobacterium avium subspecies paratuberculosis infections?. Immunobiology, 2011, 216, 840-846.	1.9	376
2	Comparative immunological and microbiological aspects of paratuberculosis as a model mycobacterial infection. Veterinary Immunology and Immunopathology, 2012, 148, 29-47.	1.2	310
3	High-Throughput Direct Fecal PCR Assay for Detection of Mycobacterium avium subsp. paratuberculosis in Sheep and Cattle. Journal of Clinical Microbiology, 2014, 52, 745-757.	3.9	76
4	Experimental infection model for Johne's disease using a lyophilised, pure culture, seedstock of Mycobacterium avium subspecies paratuberculosis. Veterinary Microbiology, 2010, 141, 301-311.	1.9	57
5	Immunological, clinical, haematological and oxidative responses to long distance transportation in horses. Research in Veterinary Science, 2017, 115, 78-87.	1.9	54
6	Development and Validation of a Liquid Medium (M7H9C) for Routine Culture of Mycobacterium avium subsp. paratuberculosis To Replace Modified Bactec 12B Medium. Journal of Clinical Microbiology, 2013, 51, 3993-4000.	3.9	52
7	Comparison of methods for miRNA isolation and quantification from ovine plasma. Scientific Reports, 2020, 10, 825.	3.3	52
8	Toll-like receptor genes are differentially expressed at the sites of infection during the progression of Johne's disease in outbred sheep. Veterinary Immunology and Immunopathology, 2008, 124, 132-151.	1.2	47
9	Candidate gene and genome-wide association studies of Mycobacterium avium subsp. paratuberculosis infection in cattle and sheep: A review. Comparative Immunology, Microbiology and Infectious Diseases, 2011, 34, 197-208.	1.6	45
10	Case definition terminology for paratuberculosis (Johne's disease). BMC Veterinary Research, 2017, 13, 328.	1.9	45
11	Macrophage polarization in cattle experimentally exposed to <i>Mycobacterium avium</i> subsp. <i>paratuberculosis</i> . Pathogens and Disease, 2015, 73, ftv085.	2.0	41
12	Expression of genes associated with the antigen presentation and processing pathway are consistently regulated in early Mycobacterium avium subsp. paratuberculosis infection. Comparative Immunology, Microbiology and Infectious Diseases, 2012, 35, 151-162.	1.6	40
13	Mycobacterium avium subspecies paratuberculosis is able to manipulate host lipid metabolism and accumulate cholesterol within macrophages. Microbial Pathogenesis, 2019, 130, 44-53.	2.9	39
14	Can early host responses to mycobacterial infection predict eventual disease outcomes?. Preventive Veterinary Medicine, 2013, 112, 203-212.	1.9	37
15	The early lymphocyte proliferation response in sheep exposed to Mycobacterium avium subsp. paratuberculosis compared to infection status. Immunobiology, 2010, 215, 12-25.	1.9	32
16	Indoleamine 2,3-Dioxygenase, Tryptophan Catabolism, and Mycobacterium avium subsp. paratuberculosis: a Model for Chronic Mycobacterial Infections. Infection and Immunity, 2011, 79, 3821-3832.	2.2	32
17	Role of host- and pathogen-associated lipids in directing the immune response in mycobacterial infections, with emphasis onMycobacterium aviumsubsp.paratuberculosis. Critical Reviews in Microbiology, 2014, 42, 1-13.	6.1	30
18	The interleukin 10 response in ovine Johne's disease. Veterinary Immunology and Immunopathology, 2011, 139, 10-16.	1.2	29

Kumudika de Silva

#	Article	IF	CITATIONS
19	Expression of genes associated with cholesterol and lipid metabolism identified as a novel pathway in the early pathogenesis of Mycobacterium avium subspecies paratuberculosis-infection in cattle. Veterinary Immunology and Immunopathology, 2014, 160, 147-157.	1.2	24
20	Toll-like receptor (TLR)6 and TLR1 differentiation in gene expression studies of Johne's disease. Veterinary Immunology and Immunopathology, 2010, 137, 142-148.	1.2	23
21	Efficient, Validated Method for Detection of Mycobacterial Growth in Liquid Culture Media by Use of Bead Beating, Magnetic-Particle-Based Nucleic Acid Isolation, and Quantitative PCR. Journal of Clinical Microbiology, 2015, 53, 1121-1128.	3.9	22
22	Immunopathological changes and apparent recovery from infection revealed in cattle in an experimental model of Johne's disease using a lyophilised culture of Mycobacterium avium subspecies paratuberculosis. Veterinary Microbiology, 2018, 219, 53-62.	1.9	22
23	Bone marrow stem cell and progenitor response to injury. Wound Repair and Regeneration, 2001, 9, 495-500.	3.0	21
24	Enzyme-Linked Immunospot: An Alternative Method for the Detection of Interferon Gamma in Johne's Disease. Journal of Veterinary Diagnostic Investigation, 2009, 21, 187-196.	1.1	21
25	Gene expression profiles during subclinical Mycobacterium avium subspecies paratuberculosis infection in sheep can predict disease outcome. Scientific Reports, 2019, 9, 8245.	3.3	21
26	A Rapid Method for Quantifying Viable Mycobacterium avium subsp. paratuberculosis in Cellular Infection Assays. Applied and Environmental Microbiology, 2016, 82, 5553-5562.	3.1	20
27	Biomarkers for Detecting Resilience against Mycobacterial Disease in Animals. Infection and Immunity, 2019, 88, .	2.2	20
28	CD4+ T-cells, Î ³ Î [,] T-cells and B-cells are associated with lack of vaccine protection in Mycobacterium avium subspecies paratuberculosis infection. Vaccine, 2015, 33, 149-155.	3.8	19
29	Defining resilience to mycobacterial disease: Characteristics of survivors of ovine paratuberculosis. Veterinary Immunology and Immunopathology, 2018, 195, 56-64.	1.2	19
30	Variation in susceptibility of different breeds of sheep to Mycobacterium avium subspecies paratuberculosis following experimental inoculation. Veterinary Research, 2017, 48, 36.	3.0	18
31	The humoral immune response is essential for successful vaccine protection against paratuberculosis in sheep. BMC Veterinary Research, 2019, 15, 223.	1.9	18
32	Mycobacterial infection-induced miR-206 inhibits protective neutrophil recruitment via the CXCL12/CXCR4 signalling axis. PLoS Pathogens, 2021, 17, e1009186.	4.7	18
33	In vivo and in vitro expression pattern of Toll-like receptors in Mycobacterium avium subspecies paratuberculosis infection. Veterinary Immunology and Immunopathology, 2013, 156, 20-31.	1.2	17
34	Applying the One Health Concept to Mycobacterial Research – Overcoming Parochialism. Zoonoses and Public Health, 2017, 64, 401-422.	2.2	16
35	Specific faecal antibody responses in sheep infected with Mycobacterium avium subspecies paratuberculosis. Veterinary Immunology and Immunopathology, 2015, 166, 125-131.	1.2	14
36	Evaluation of the limitations and methods to improve rapid phage-based detection of viable Mycobacterium avium subsp. paratuberculosis in the blood of experimentally infected cattle. BMC Veterinary Research, 2016, 12, 115.	1.9	14

Kumudika de Silva

#	Article	IF	CITATIONS
37	Validation of endogenous reference genes for expression profiling of RAW264.7 cells infected with Mycobacterium avium subsp. paratuberculosis by quantitative PCR. Veterinary Immunology and Immunopathology, 2007, 115, 43-55.	1.2	13
38	Enhancement of the interferon gamma assay to detect paratuberculosis using interleukin-7 and interleukin-12 potentiation. Veterinary Immunology and Immunopathology, 2012, 149, 28-37.	1.2	11
39	The immunogenicity and tissue reactivity of Mycobacterium avium subsp paratuberculosis inactivated whole cell vaccine is dependent on the adjuvant used. Heliyon, 2019, 5, e01911.	3.2	11
40	Identification of differentially expressed genes in ileum, intestinal lymph node and peripheral blood mononuclear cells of sheep infected with Mycobacterium avium subsp. paratuberculosis using differential display polymerase chain reaction. Veterinary Immunology and Immunopathology, 2009, 131, 177-189.	1.2	10
41	Cellular and humoral immunogenicity of Mycobacterium avium subsp. paratuberculosis specific lipopentapeptide antigens. Research in Veterinary Science, 2013, 95, 123-129.	1.9	10
42	IFN-Î ³ fails to overcome inhibition of selected macrophage activation events in response to pathogenic mycobacteria. PLoS ONE, 2017, 12, e0176400.	2.5	9
43	Lymphoproliferative and Gamma Interferon Responses to Stress-Regulated Mycobacterium avium subsp. paratuberculosis Recombinant Proteins. Vaccine Journal, 2014, 21, 831-837.	3.1	8
44	Analysis of mycobacterial infection-induced changes to host lipid metabolism in a zebrafish infection model reveals a conserved role for LDLR in infection susceptibility. Fish and Shellfish Immunology, 2018, 83, 238-242.	3.6	8
45	Investigation of immunity in sheep following footrot infection and vaccination. Vaccine, 2014, 32, 6979-6985.	3.8	6
46	Integrated vaccine screening system: using cellular functional capacity in vitro to assess genuine vaccine protectiveness in ruminants. Pathogens and Disease, 2018, 76, .	2.0	5
47	An objective method for assessment of foot conformation in sheep. Small Ruminant Research, 2018, 167, 22-28.	1.2	5
48	Sheep and cattle exposed to Mycobacterium avium subspecies paratuberculosis exhibit altered total serum cholesterol profiles during the early stages of infection. Veterinary Immunology and Immunopathology, 2018, 202, 164-171.	1.2	4
49	Immunology of paratuberculosis infection and disease , 2020, , 248-265.		3
50	Apoptosis of lymph node and peripheral blood cells in ovine Johne's disease. Veterinary Immunology and Immunopathology, 2013, 156, 82-90.	1.2	2
51	Mycobacterium avium subsp. paratuberculosis exploits miRNA expression to modulate lipid metabolism and macrophage polarisation pathways during infection. Scientific Reports, 2022, 12, .	3.3	2
52	Developing smarter vaccines for paratuberculosis: From early biomarkers to vaccine design. Immunological Reviews, 2021, 301, 145-156.	6.0	1