Gulzhian Dzhardimalieva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4658983/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis, crystal structure, thermal properties of copper(II) acrylate complex with 4′-phenyl-2,2′:6′,2′′-terpyridine and its use in nanomaterials science. Journal of Molecular Structure, 1250, 131909.	3022,	5
2	Frontal polymerization synthesis of scandium polyacrylamide nanomaterial and its application in humidity testing. Colloid and Polymer Science, 2022, 300, 191-202.	2.1	8
3	Gigantic stimulation in response by solar irradiation in self-healable and self-powered LPG sensor based on triboelectric nanogenerator: Experimental and DFT computational study. Sensors and Actuators B: Chemical, 2022, 359, 131573.	7.8	17
4	Polymer-mediated synthesis of Fe-Co nanocrystalline alloys: Formulation and properties. Materials Today: Proceedings, 2021, 34, 322-325.	1.8	1
5	Characterization and bioactivity of magnetite-based nanocomposites. Materials Today: Proceedings, 2021, 34, 317-321.	1.8	4
6	Core-shell nanocomposites produced from metal dicarboxylates. Materials Today: Proceedings, 2021, 34, 235-238.	1.8	2
7	Metallopolymer hybrid nanocomposites: Preparation and structures. Materials Today: Proceedings, 2021, 34, 366-369.	1.8	3
8	Polymer chemistry underpinning materials for triboelectric nanogenerators (TENGs): Recent trends. European Polymer Journal, 2021, 142, 110163.	5.4	37
9	Study of the products of the reaction of cobalt(II) acetate with 2-iodoterephthalic acid and 1,10-phenanthroline. Journal of Coordination Chemistry, 2021, 74, 649-662.	2.2	2
10	A review on the polymers with shape memory assisted self-healing properties for triboelectric nanogenerators. Journal of Materials Research, 2021, 36, 1225-1240.	2.6	11
11	Novel Self-Healing Metallocopolymers with Pendent 4-Phenyl-2,2′:6′,2″-terpyridine Ligand: Kinetic Studies and Mechanical Properties. Polymers, 2021, 13, 1760.	4.5	4
12	Fabrication, Microstructure and Colloidal Stability of Humic Acids Loaded Fe3O4/APTES Nanosorbents for Environmental Applications. Nanomaterials, 2021, 11, 1418.	4.1	16
13	FeCo@Nâ€Doped Nanoparticles Encapsulated in Polyacrylamideâ€Derived Carbon Nanocages as a Functional Filler for Polyethylene System. ChemistrySelect, 2021, 6, 8546-8559.	1.5	1
14	2-D self-healable polyaniline-polypyrrole nanoflakes based triboelectric nanogenerator for self-powered solar light photo detector with DFT study. Journal of Colloid and Interface Science, 2021, 600, 572-585.	9.4	33
15	Sample preparation considerations for surface and crystalline properties and ecotoxicity of bare and silica-coated magnetite nanoparticles. RSC Advances, 2021, 11, 32227-32235.	3.6	7
16	Composite materials based on epoxy matrix and titanium dioxide (IV) nanoparticles: synthesis, microstructure and properties. , 2021, 28, 224-237.		2
17	Colloidal Stability of Silica-Modified Magnetite Nanoparticles: Comparison of Various Dispersion Techniques. Nanomaterials, 2021, 11, 3295.	4.1	2
18	Coordination Polymer Based on Nickel(II) Maleate and 4′-Phenyl-2,2′:6′,2″-Terpyridine: Synthesis, Cryst Structure and Conjugated Thermolysis. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 965-975.	al 3.7	15

#	Article	IF	CITATIONS
19	Conjugated Thermolysis of Metal-Containing Monomers: Toward Core–Shell Nanostructured Advanced Materials. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 88-110.	3.7	13
20	Synthesis and Properties of Copper Trimesinate Complexes with Polypyridine Ligands. Russian Journal of General Chemistry, 2020, 90, 1884-1891.	0.8	10
21	Effects of Modified Magnetite Nanoparticles on Bacterial Cells and Enzyme Reactions. Nanomaterials, 2020, 10, 1499.	4.1	30
22	Synthesis and Thermal Conversions of Unsaturated Nickel(II) Monocarboxylates—Precursors of Metal-Containing Nanocomposites. Russian Journal of Inorganic Chemistry, 2020, 65, 1173-1185.	1.3	10
23	The synthesis of a Cu _{0.8} Zn _{0.2} Sb ₂ –polyacrylamide nanocomposite by frontal polymerization for moisture and photodetection performance. Materials Advances, 2020, 1, 2804-2817.	5.4	16
24	Basic Approaches to the Design of Intrinsic Self-Healing Polymers for Triboelectric Nanogenerators. Polymers, 2020, 12, 2594.	4.5	15
25	Metal-Containing Monomers Based on Copper and Zinc Salts of Unsaturated Acids and Pendent 4-phenyl-2,2′:6′,2′′-terpyridine Ligands: Synthesis, Characterization and Thermal Properties. Key Engineering Materials, 2020, 869, 119-128.	0.4	4
26	Effects of Humic Acids on the Ecotoxicity of Fe3O4 Nanoparticles and Fe-Ions: Impact of Oxidation and Aging. Nanomaterials, 2020, 10, 2011.	4.1	15
27	Synthesis of Copper(II) Trimesinate Coordination Polymer and Its Use as a Sorbent for Organic Dyes and a Precursor for Nanostructured Material. Polymers, 2020, 12, 1024.	4.5	43
28	Thermal Decomposition of Acidic Cobalt(II) Carboxylates with Unsaturated Dicarboxylic Anions. Russian Journal of Inorganic Chemistry, 2020, 65, 61-68.	1.3	5
29	Flow-Through Catalytic Reactors Based on Metal Nanoparticles Immobilized within Porous Polymeric Gels and Surfaces/Hollows of Polymeric Membranes. Polymers, 2020, 12, 572.	4.5	15
30	Stabilization of Magnetite Nanoparticles in Humic Acid Medium and Study of Their Sorption Properties. Colloid Journal, 2020, 82, 1-7.	1.3	8
31	Self-healing and shape memory metallopolymers: state-of-the-art and future perspectives. Dalton Transactions, 2020, 49, 3042-3087.	3.3	54
32	Polymer-Immobilized Clusters and Metal Nanoparticles in Catalysis. Kinetics and Catalysis, 2020, 61, 198-223.	1.0	33
33	Structure and properties of epoxy polymer nanocomposites reinforced with carbon nanotubes. Journal of Polymer Research, 2019, 26, 1.	2.4	17
34	Evolution of Silver Nanoparticles Synthesized In Situ in a Glass-Like Epoxy Matrix. Russian Journal of Physical Chemistry A, 2019, 93, 1317-1321.	0.6	0
35	Nickel Itaconate Thermolysis. Russian Journal of Inorganic Chemistry, 2019, 64, 786-797.	1.3	5
36	Metal Chelate Monomers Based on Nickel Maleate and Chelating Nâ€Heterocycles as Precursors of Coreâ€shell Nanomaterials with Advanced Tribological Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 758-767.	1.2	8

#	Article	IF	CITATIONS
37	Chalcogen-containing metal chelates as single-source precursors of nanostructured materials: recent advances and future development. Journal of Coordination Chemistry, 2019, 72, 1425-1465.	2.2	8
38	New Example of Metalâ€Containing Monomers for Frontal Polymerization. ChemistrySelect, 2019, 4, 2105-2108.	1.5	11
39	Metal chelate monomers based on nickel(II) cinnamate and chelating N-heterocycles as precursors of nanostructured materials. Journal of Coordination Chemistry, 2019, 72, 796-813.	2.2	12
40	Synthesis and characterization of highly porous hexagonal shaped CeO2-Gd2O3-CoO nanocomposite and its opto-electronic humidity sensing. Applied Surface Science, 2019, 479, 326-333.	6.1	30
41	METAL-CONTAINING NANOCOMPOSITES BASED ON THE SALTS OF SATURATED COBALT(II) MONOCARBOXYL ACIDS. Nanotechnologies in Russia, 2019, 14, 536-542.	0.7	2
42	Effect of Magnetite Nanoparticles on the Dielectric Properties of Nanocomposites Based on Linear Low-Density Polyethylene. Russian Journal of Physical Chemistry A, 2019, 93, 2424-2428.	0.6	2
43	Metal-Organic Coordination Polymers Based on Copper: Synthesis, Structure and Adsorption Properties. Key Engineering Materials, 2019, 816, 108-113.	0.4	3
44	Traveling-waves of metal-containing monomer polymerization without diffusion and heat-transfer. Heliyon, 2019, 5, e02829.	3.2	1
45	Fiber-Matrix-Coupling Agent Interactions in Glass-Fiber-Reinforced Polyethylene Composites Under Gamma Irradiation. Mechanics of Composite Materials, 2019, 55, 597-606.	1.4	1
46	Recent advances in metallopolymer-based drug delivery systems. RSC Advances, 2019, 9, 37009-37051.	3.6	18
47	Development of nanostructured nickel reinforced polyacrylamide via frontal polymerization for a reliable room temperature humidity sensor. European Polymer Journal, 2019, 112, 161-169.	5.4	33
48	Testing the mechanical and tribological properties of new metal-polymer nanocomposite materials based on linear low-density polyethylene and Al65Cu22Fe13 quasicrystals. Polymer Testing, 2019, 74, 178-186.	4.8	20
49	Preparation of zinc (II) nitrate poly acryl amide (PAAm) and its optoelectronic application for humidity sensing. Journal of Materials Science: Materials in Electronics, 2018, 29, 7770-7777.	2.2	21
50	Design Strategies of Metal Complexes Based on Chelating Polymer Ligands and Their Application in Nanomaterials Science. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 1305-1393.	3.7	28
51	Structure and Properties of Nanosized Composites Based on Fe3O4 and Humic Acids. Russian Journal of Physical Chemistry B, 2018, 12, 172-178.	1.3	4
52	Metal Complexes with Polymer Chelating Ligands. Springer Series in Materials Science, 2018, , 199-366.	0.6	6
53	Polymer Complexes Based on Metal Chelate Monomers. Springer Series in Materials Science, 2018, , 367-501.	0.6	0
54	Supramolecular Chemistry of Polymer Metal Chelates. Springer Series in Materials Science, 2018, , 761-897.	0.6	0

#	Article	IF	CITATIONS
55	Thermal Transformations of Polymeric Metal Chelates and Their Precursors in Nanocomposites Formation. Springer Series in Materials Science, 2018, , 899-1007.	0.6	1
56	Polymer Chelating Ligands: Classification, Synthesis, Structure, and Chemical Transformations. Springer Series in Materials Science, 2018, , 13-197.	0.6	3
57	Metal Chelate Dendrimers. Springer Series in Materials Science, 2018, , 503-631.	0.6	1
58	Coordination Polymers Containing Metal Chelate Units. Springer Series in Materials Science, 2018, , 633-759.	0.6	2
59	Quantitative Description of Properties of Nickel-Containing Nanocomposites Affecting Their Magnetic Characteristics. Russian Journal of Inorganic Chemistry, 2018, 63, 1424-1426.	1.3	5
60	Preparation of metal-polymer nanocomposites by chemical reduction of metal ions: functions of polymer matrices. Journal of Polymer Research, 2018, 25, 1.	2.4	35
61	Synthetic Methodologies for Chelating Polymer Ligands: Recent Advances and Future Development. ChemistrySelect, 2018, 3, 13234-13270.	1.5	13
62	Thermal Decomposition of Unsaturated Nickel(II) Dicarboxylates. Russian Journal of Inorganic Chemistry, 2018, 63, 1217-1224.	1.3	4
63	Synthesis and Thermal Conversions of Unsaturated Cobalt(II) Monocarboxylates: Precursors for Metal Polymer Nanocomposites. Russian Journal of Inorganic Chemistry, 2018, 63, 1041-1049.	1.3	4
64	Conjugated Thermolysis of Metal Chelate Monomers Based on Cobalt Acrylate Complexes with Polypyridyl Ligands and Tribological Performance of Nanomaterials Obtained. ChemistrySelect, 2018, 3, 8998-9007.	1.5	16
65	Thermolysis of Polymeric Metal Chelates. Springer Series on Polymer and Composite Materials, 2018, , 247-350.	0.7	1
66	Thermolysis of Low Molecular Weight Metal Chelates. Springer Series on Polymer and Composite Materials, 2018, , 71-245.	0.7	1
67	Application of Nanomaterials Prepared by Thermolysis of Metal Chelates. Springer Series on Polymer and Composite Materials, 2018, , 459-541.	0.7	1
68	The Conjugate Thermolysis—Thermal Polymerization of Metal Chelate Monomers and Thermolysis of Polymers Formed In Situ. Springer Series on Polymer and Composite Materials, 2018, , 351-423.	0.7	0
69	Thermolysis of Metal Chelates in Polymer Matrices. Springer Series on Polymer and Composite Materials, 2018, , 425-458.	0.7	0
70	General Characteristics of the Methods of Thermolysis of Metal Compounds. Springer Series on Polymer and Composite Materials, 2018, , 25-69.	0.7	0
71	Molecular design of supramolecular polymers with chelated units and their application as functional materials. Journal of Coordination Chemistry, 2018, 71, 1272-1356.	2.2	18
72	Synthesis and characterization of nanostructured MnO ₂ –CoO and its relevance as an opto-electronic humidity sensing device. RSC Advances, 2018, 8, 20534-20542.	3.6	17

#	Article	IF	CITATIONS
73	Chemistry of Polymeric Metal Chelates. Springer Series in Materials Science, 2018, , .	0.6	21
74	Nanomaterials Preparation by Thermolysis of Metal Chelates. Springer Series on Polymer and Composite Materials, 2018, , .	0.7	22
75	Review: recent advances in the chemistry of metal chelate monomers. Journal of Coordination Chemistry, 2017, 70, 1468-1527.	2.2	27
76	Nonthermal model for thermal frontal polymerization of metal-containing monomers. Polymer Science - Series B, 2017, 59, 210-215.	0.8	6
77	Design and synthesis of coordination polymers with chelated units and their application in nanomaterials science. RSC Advances, 2017, 7, 42242-42288.	3.6	74
78	Synthetic methodologies and spatial organization of metal chelate dendrimers and star and hyperbranched polymers. Dalton Transactions, 2017, 46, 10139-10176.	3.3	12
79	Synthesis and characterization of copper (II) nitrate polyacrylamide & its application as opto-electronic humidity sensor. Sensors and Actuators A: Physical, 2017, 263, 415-422.	4.1	30
80	NANOCOMPOSITE MATERIALS BASED ON METAL-CONTAINING NANOPARTICLES AND THERMOPLASTIC POLYMER MATRICES: PRODUCTION AND PROPERTIES. International Journal of Nanomechanics Science and Technology, 2017, 8, 7-25.	0.5	6
81	SPECTRAL LUMINESCENCE PROPERTIES OF CdS NANOCOMPOSITES IN A POLYMER SHELL. Composites: Mechanics, Computations, Applications, 2017, 8, 171-180.	0.3	1
82	THE STRUCTURE AND THERMAL PROPERTIES OF NANOCOMPOSITES BASED ON COPPER NANOPARTICLES IN A POLYETHYLENE MATRIX. International Journal of Nanomechanics Science and Technology, 2017, 8, 27-40.	0.5	1
83	NICKEL CHELATE COMPLEXES AS A SINGLE-SOURCE PRECURSOR OF NANOCOMPOSITES. Nanoscience and Technology, 2017, 8, 331-346.	1.8	0
84	Polyporphyrin Complexes of Some Transition Metals. Synthesis and Catalytic Properties. Oriental Journal of Chemistry, 2016, 32, 2473-2480.	0.3	4
85	Preparation and Properties of Nanostructured PANI Thin Film and Its Application as Low Temperature NO2 Sensor. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 1428-1433.	3.7	30
86	Mechanochemical destruction of crystalline hydrates of cobalt and zinc acetylenedicarboxylates during dehydration. Russian Chemical Bulletin, 2016, 65, 2025-2033.	1.5	7
87	Synthesis and characterization of metal–polymer nanocomposites with radiation-protective properties. Russian Metallurgy (Metally), 2016, 2016, 1207-1213.	0.5	4
88	Fabrication of nanostructured yttria stabilized zirconia multilayered films and their optical humidity sensing capabilities based on transmission. Sensors and Actuators B: Chemical, 2016, 232, 283-291.	7.8	50
89	Photochromic and Magnetic Nanocomposites Based on Epoxy and Polycarbonate Matrices. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 1320-1327.	3.7	1
90	Metal Chelate Monomers as Precursors of Polymeric Materials. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 1112-1173.	3.7	26

#	Article	IF	CITATIONS
91	Nanoparticles of Magnetite in Polymer Matrices: Synthesis and Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 1212-1230.	3.7	25
92	Preparation and Reactivity of Metal-Containing Monomers. 78. Scandium-Containing Monomers And Polymers: Synthesis, Structure and Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 1441-1451.	3.7	10
93	Synthesis and thermal conversions of unsaturated nickel(II) dicarboxylates as precursors of metallopolymer nanocomposites. Russian Journal of Inorganic Chemistry, 2016, 61, 1111-1124.	1.3	12
94	Synthesis and reactivity of metal-containing monomers 76. Nanostructured materials obtained by controlled thermolysis of Ni, Co, and Cu chelate complexes with azomethine ligands. Russian Chemical Bulletin, 2016, 65, 139-150.	1.5	5
95	In Memory of Professor Anatolii D. Pomogailo (1939–2015). Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 1107-1111.	3.7	2
96	Polymer-modified supported palladium catalysts for the hydrogenation of acetylene compounds. Kinetics and Catalysis, 2016, 57, 360-367.	1.0	14
97	Effect of intramolecular hydrogen bond in unsaturated dicarboxylic acid molecules on the formation of cobalt(II) and nickel(II) carboxylates. Russian Journal of Inorganic Chemistry, 2016, 61, 59-62.	1.3	5
98	Macromolecular Acrylamide Complexes of Rhodium: Synthesis and Characterization. Macromolecular Symposia, 2015, 351, 81-86.	0.7	2
99	Synthesis and reactivity of metal-containing monomers. Russian Chemical Bulletin, 2015, 64, 936-942.	1.5	5
100	Polymer-immobilized rhodium complexes forming in situ: preparation and catalytic properties. Kinetics and Catalysis, 2015, 56, 694-702.	1.0	8
101	Fabrication and characterization of metal-core carbon-shell nanoparticles filling an aeronautical composite matrix. European Polymer Journal, 2015, 71, 140-151.	5.4	17
102	Synthesis and thermal conversions of unsaturated cobalt(II) dicarboxylates as precursors of metallopolymer nanocomposites. Russian Journal of Inorganic Chemistry, 2015, 60, 897-905.	1.3	11
103	Frontal polymerization of acrylamide complex with nanostructured ZnS and PbS: Their characterizations and sensing applications. Sensors and Actuators B: Chemical, 2015, 207, 460-469.	7.8	20
104	Nanostructured Materials Preparation via Condensation Ways. , 2014, , .		57
105	Physics and Chemistry of Sol-Gel Nanocomposites Formation. , 2014, , 141-203.		0
106	Polymer-matrix nanocomposite gas-sensing materials. Inorganic Materials, 2014, 50, 296-305.	0.8	22
107	Synthesis, characterization and liquefied petroleum gas sensing of cobalt acetylenedicarboxylate and its polymer. Sensors and Actuators B: Chemical, 2014, 192, 503-511.	7.8	7

108 Physical-Chemical Methods of Nanocomposite Synthesis. , 2014, , 91-139.

GULZHIAN DZHARDIMALIEVA

#	Article	IF	CITATIONS
109	Calculation of energetic characteristics for the complexation of unsaturated dicarboxylic acids with cobalt(II). Russian Journal of Inorganic Chemistry, 2014, 59, 345-348.	1.3	1
110	Reduction of Metal Ions in Polymer Matrices as a Condensation Method of Nanocomposite Synthesis. , 2014, , 13-89.		8
111	THE STRUCTURE OF NANOCOMPOSITES BASED ON MAGNETITE AND HUMIC ACIDS PRODUCED BY CHEMICAL COPRECIPITATION AND MECHANOCHEMICAL SYNTHESIS. International Journal of Nanomechanics Science and Technology, 2014, 5, 323-336.	0.5	2
112	SORPTION PROPERTIES OF PECTIC NANOCOMPOSITES IN RELATION TO LEAD IONS. International Journal of Nanomechanics Science and Technology, 2014, 5, 287-301.	0.5	0
113	Synthesis and reactivity of metal-containing monomers 72. Monomeric and polymeric metal acetylenecarboxylates and their nanocomposite products: synthesis, structures, and properties. Russian Chemical Bulletin, 2013, 62, 1649-1658.	1.5	11
114	Hybrid Polymer-Immobilized Nanosized Pd Catalysts for Hydrogenation Reaction Obtained via Frontal Polymerization. Journal of Catalysts, 2013, 2013, 1-12.	0.5	5
115	Controlled Thermolysis of Macromolecule-Metal Complexes as a Way for Synthesis of Nanocomposites. Macromolecular Symposia, 2012, 317-318, 198-205.	0.7	9
116	Mechanochemical Formulation of Coating Iron Oxides Magnetic Nanoparticles with Humics. Macromolecular Symposia, 2012, 317-318, 169-174.	0.7	1
117	Synthesis and Characteristics of Acetylenedicarboxylic Acid Salts as Precursors for Obtaining of Nanocomposites. Macromolecular Symposia, 2012, 317-318, 180-186.	0.7	8
118	Synthesis of stable AuAg bimetallic nanoparticles encapsulated by diblock copolymer micelles. Nanoscale, 2012, 4, 1658.	5.6	29
119	Synthesis and Characterization of Nanosized Pectinâ€Based Formulations. Macromolecular Symposia, 2012, 317-318, 175-179.	0.7	3
120	Thermophysical and Magnetic Properties of Carbon Beads Containing Cobalt Nanocrystallites. International Journal of Thermophysics, 2012, 33, 627-639.	2.1	5
121	Polymer-assisted synthesis of metallopolymer nanocomposites and their applications in liquefied petroleum gas sensing at room temperature. Sensors and Actuators B: Chemical, 2012, 166-167, 281-291.	7.8	14
122	Magnetoactive Humicâ€Based Nanocomposites. Macromolecular Symposia, 2011, 304, 18-23.	0.7	15
123	Thermolysis of metallopolymers and their precursors as a method for the preparation of nanocomposites. Russian Chemical Reviews, 2011, 80, 257-292.	6.5	35
124	Preparation of nanostructured materials through thermolysis of metal chelate complexes. Inorganic Materials, 2011, 47, 876-883.	0.8	7
125	Hybrid polymer-immobilized palladium nanoparticles: Preparation and catalytic properties. Kinetics and Catalysis, 2011, 52, 242-250.	1.0	8
126	Experimental investigations on liquefied petroleum gas sensing of Cd(NO3)2·(AAm)4·2H2O and CdS/polyacrylamide synthesized via frontal polymerization. Sensors and Actuators B: Chemical, 2011, 160, 826-834.	7.8	17

#	Article	IF	CITATIONS
127	Reactivity of metal-containing monomers 70. Preparation and magnetic properties of metal-containing nanocomposites. Russian Chemical Bulletin, 2011, 60, 1476-1487.	1.5	13
128	Reactivity of metal-containing monomers 71. Synthesis of nanosized quasicrystals and related metallopolymer composites. Russian Chemical Bulletin, 2011, 60, 1871-1879.	1.5	7
129	Polymers based on unsaturated alkoxides of refractory metals. Polymer Science - Series C, 2011, 53, 68-74.	1.7	2
130	Metal-containing nanoparticles with core-polymer shell structure. Colloid Journal, 2011, 73, 458-466.	1.3	11
131	Thermophysical and Magnetic Properties of Carbon Beads Containing Nickel Nanocrystallites. International Journal of Thermophysics, 2011, 32, 1973-1985.	2.1	11
132	Refractory Metalâ€Containing Polymers and Nanocomposites: Preparation and Properties. Macromolecular Symposia, 2011, 304, 101-108.	0.7	7
133	Thermodynamic characteristics of hydrated acrylamide and polyacrylamide complexes of cobalt nitrate at T → 0 to 380 K. Polymer Science - Series A, 2010, 52, 349-355.	1.0	2
134	Monomeric and Polymeric Metal Carboxylates as Precursors of Nanocomposite Materials. Springer Series in Materials Science, 2010, , 257-288.	0.6	0
135	Spectral Characteristics and Molecular Structure of Unsaturated Carboxylic Acid Salts. Springer Series in Materials Science, 2010, , 57-104.	0.6	0
136	Structure and Properties of Magnetic (Co, Fe, Fe[sub 3]C and Ni) Carbon Beads. , 2010, , .		0
137	Synthesis of Unsaturated Carboxylic Acid Salts. Springer Series in Materials Science, 2010, , 27-55.	0.6	0
138	Macromolecular Metal Carboxylates and Their Nanocomposites. Springer Series in Materials Science, 2010, , .	0.6	30
139	Monomeric and Polymeric Carboxylic Acids. Springer Series in Materials Science, 2010, , 7-25.	0.6	6
140	Molecular and Structural Organization of Metal-Containing (Co)Polymers. Springer Series in Materials Science, 2010, , 179-216.	0.6	0
141	Polymerization and Copolymerization of Salts of Unsaturated Carboxylic Acids. Springer Series in Materials Science, 2010, , 105-144.	0.6	0
142	Properties and Basic Fields of Application of Metal-Containing Polymers. Springer Series in Materials Science, 2010, , 217-256.	0.6	0
143	Polymer-Analog Transformations in Reactions of Synthesis of Metal Macrocarboxylates. Springer Series in Materials Science, 2010, , 145-177.	0.6	0
144	Reactivity of metal-containing monomers 66. Hydrogenation of nitrotoluene derivatives in the presence of polymer-immobilized Pd nanoparticles. Russian Chemical Bulletin, 2009, 58, 2070-2076.	1.5	7

#	Article	IF	CITATIONS
145	Macromolecular metal carboxylates. Russian Chemical Reviews, 2008, 77, 259-301.	6.5	47
146	Intermatrix Synthesis of Magnetic Nanocrystals by Frontal Polymerization and Subsequent Pyrolysis of Iron Containing Monomer. IEEE Transactions on Magnetics, 2008, 44, 2764-2767.	2.1	7
147	Polymerization and Catalytic Properties of Cluster-Containing Monomers and Polymers. Macromolecular Symposia, 2008, 270, 95-105.	0.7	3
148	Hafnium-Containing Nanocomposites. , 2008, , 241-267.		2
149	Hafnium-containing Nanocomposites. Journal of Thermoplastic Composite Materials, 2007, 20, 151-174.	4.2	9
150	Formation of stable magnetic nanoparticles by pyrolysis of metal containing polymers. Journal of Magnetism and Magnetic Materials, 2007, 316, e749-e752.	2.3	6
151	Thermal polymerization of cobalt(II) and nickel(II) acrylates: Use of in situ dielectric measurements. Polymer Science - Series A, 2007, 49, 267-274.	1.0	4
152	Ferromagnetic resonance of cobalt nanoparticles in the polymer shell. Physics of the Solid State, 2007, 49, 1507-1513.	0.6	7
153	Processing and properties of composite magnetic powders containing Co nanoparticles in polymeric matrix. Journal of Alloys and Compounds, 2006, 423, 123-127.	5.5	10
154	Hafnium-containing nanocomposites. Inorganic Materials, 2006, 42, 128-143.	0.8	10
155	Synthesis, structure, and catalytic properties of polymer-immobilized rhodium clusters. Kinetics and Catalysis, 2006, 47, 719-727.	1.0	4
156	Formation of cobalt nanoparticles in inorganic matrix by frontal polymerisation and thermolysis of metal-containing monomers. Physica B: Condensed Matter, 2006, 384, 282-285.	2.7	17
157	Direct Synthesis of Isolated L10 FePt Nanoparticles in a Robust TiO2 Matrix via a Combined Sol–Gel/Pyrolysis Route. Advanced Materials, 2006, 18, 466-470.	21.0	33
158	Preparation, X-ray structure, copolymerization with styrene of [(μ-H)Os3(μ-OCNMe2)(CO)9{P(CH2CHCH2)Ph2}] and catalytic properties of the cluster/styrene copolymer. Journal of Organometallic Chemistry, 2005, 690, 4258-4264.	1.8	10
159	Synthesis and reactivity of metal-containing monomers. Part 59. Preparation and polymerization transformations of vinyl and isopropenyl derivatives of hafnocene dichloride. Russian Chemical Bulletin, 2005, 54, 247-251.	1.5	4
160	Compositional and Structural Irregularities of Macromolecular Metal Complexes. , 2005, , 147-208.		1
161	Controlled Pyrolysis of Metal-Containing Precursors as a Way for Synthesis of Metallopolymer Nanocomposites. , 2004, , 75-122.		4
162	Title is missing!. Journal of Nanoparticle Research, 2003, 5, 373-381.	1.9	11

#	Article	IF	CITATIONS
163	Modeling of the Kinetics and Mechanism of the Formation of Nanoparticles in a Polymer Matrix upon Thermal Decomposition of Solid Metal-Containing Polymers. Doklady Physical Chemistry, 2003, 393, 325-329.	0.9	1
164	Kinetics and Mechanism of in situ Simultaneous Formation of Metal Nanoparticles in Stabilizing Polymer Matrix. Journal of Nanoparticle Research, 2003, 5, 497-519.	1.9	63
165	Magnetic properties of polymer matrix nanocomposites on a basis of metal carboxylates. Macromolecular Symposia, 2003, 204, 257-266.	0.7	4
166	Frontal Polymerization of Metal-Containing Monomers as a way for Synthesis of Polymer Nanocomposites. Solid State Phenomena, 2003, 94, 323-328.	0.3	4
167	Self-Organized Metal-Polymer Nanocomposites. Solid State Phenomena, 2003, 94, 313-318.	0.3	12
168	Cluster-Containing Polymers as Precursors for the Synthesis of Polymer Nanocomposites. Solid State Phenomena, 2003, 94, 319-322.	0.3	1
169	Combined XPS and AFM study of cluster-containing polymers based on Rh. Macromolecular Symposia, 2003, 204, 251-256.	0.7	3
170	Macromolecule complexes of unsaturated polynuclear metal oxocarboxylates. Macromolecular Symposia, 2002, 186, 147-153.	0.7	5
171	Synthesis and properties of Rh6- and Os3â€clusterâ€containing monomers and their copolymers with styrene. Macromolecular Symposia, 2002, 186, 155-160.	0.7	12
172	Title is missing!. Colloid Journal, 2002, 64, 472-477.	1.3	9
173	Frontal Polymerization of Metal-Containing Monomers: A Topical Review. Journal of Inorganic and Organometallic Polymers, 2002, 12, 1-21.	1.5	27
174	The Topographic Peculiarities of the Formation of Nanosized Particles from Metallopolymers. Acta Physica Polonica A, 2002, 102, 135-145.	0.5	5
175	Structure and Magnetic Proporties of Polymer Matrix Nanocomposites. Acta Physica Polonica A, 2002, 102, 317-321.	0.5	0
176	Title is missing!. Russian Chemical Bulletin, 2001, 50, 901-906.	1.5	4
177	Copper(II) Nitrate Complex with Acrylamide: Synthesis and Crystal Structure. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2001, 27, 735-737.	1.0	13
178	Synthesis and reactivity of metal-containing monomers. Russian Chemical Bulletin, 1999, 48, 1717-1721.	1.5	2
179	Synthesis and reactivity of metal-containing monomers. Russian Chemical Bulletin, 1999, 48, 1174-1177.	1.5	11
180	The autowave modes of solid phase polymerization of metal-containing monomers in two- and three-dimensional fiberglass-filled matrices. Chaos, 1999, 9, 342-347.	2.5	25

GULZHIAN DZHARDIMALIEVA

#	Article	IF	CITATIONS
181	Polymer composites of nano-sized particles isolated in matrix. Polymers for Advanced Technologies, 1998, 9, 527-535.	3.2	25
182	Problems of unit variability in metal-containing polymers. Russian Chemical Bulletin, 1998, 47, 2319-2337.	1.5	7
183	Synthesis and reactivity of metal-containing monomers. Russian Chemical Bulletin, 1998, 47, 1460-1465.	1.5	9
184	Reactivity of metal-containing monomers. Russian Chemical Bulletin, 1998, 47, 259-264.	1.5	17
185	Synthesis and reactivity of metal-containing monomers 49. Synthesis and structure of low-valence transition metal acrylates and their polymers. Russian Chemical Bulletin, 1998, 47, 1113-1117.	1.5	1
186	Macromolecule — Metal complexes based on salts of unsaturated mono―and dicarboxylic acids: Synthesis and characterization. Macromolecular Symposia, 1998, 131, 19-27.	0.7	9
187	Synthesis and reactivity of metal-containing monomers. Russian Chemical Bulletin, 1997, 46, 362-370.	1.5	37
188	Metal-Containing Polymers as Precursors for the Production of Ferromagnetic and Superconducting Materials. , 1996, , 313-329.		1
189	Variability of Mixed-Unit Chains in Metal-Containing Polymers. , 1996, , 63-80.		2
190	Preparation and reactivity of metal-containing monomers. Russian Chemical Bulletin, 1995, 44, 858-866.	1.5	14
191	Preparation and reactivity of metal containing monomers. Russian Chemical Bulletin, 1995, 44, 1056-1061.	1.5	5
192	Preparation and reactivity of metal-containing monomers. Russian Chemical Bulletin, 1994, 43, 983-987.	1.5	5
193	Preparation and reactivity of metal-containing monomers. Russian Chemical Bulletin, 1993, 42, 1661-1665.	1.5	16
194	Preparation and reactivity of metal-containing monomers. Russian Chemical Bulletin, 1993, 42, 1666-1672.	1.5	11
195	Preparation and reactivity of metal-containing monomers. Russian Chemical Bulletin, 1993, 42, 259-263.	1.5	14
196	Preparation and reactivity of metal-containing monomers. Russian Chemical Bulletin, 1993, 42, 264-269.	1.5	10
197	Synthesis and reactivity of metal-containing monomers. Russian Chemical Bulletin, 1993, 42, 453-457.	1.5	3
198	Preparation and reactivity of metal-containing monomers. Russian Chemical Bulletin, 1993, 42, 937-942.	1.5	9

#	Article	IF	CITATIONS
199	Preparation and reactivity of metal-containing monomers. Russian Chemical Bulletin, 1993, 42, 1498-1501.	1.5	3
200	Preparation and reactivity of metal-containing monomers. Russian Chemical Bulletin, 1993, 42, 66-70.	1.5	1
201	Synthesis and reactivity of metal-containing monomers. 20. Photochemical structurization of gelatin mixtures with the participation of transition metal acrylates. Bulletin of the Russian Academy of Sciences Division of Chemical Science, 1992, 41, 454-458.	0.0	Ο
202	Preparation and reactivity of metal-containing monomers 19. Copolymerization of transition metal acrylates. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1991, 40, 297-302.	0.0	0
203	Isolation and reactivity of metal-containing monomers. 10. Dissociation of metal-containing monomers in water and organic solvents. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1989, 38, 927-930.	0.0	Ο
204	Preparation and reactivity of metal-containing monomers. 9. Low-temperature postradiation polymerization of metalcontaining monomers in devitrification of the matrices. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1988, 37, 2258-2261.	0.0	0
205	Preparation and reactivity of metal-containing monomers. 7. Synthesis and study of transition metal acrylates. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1988, 37, 1346-1351.	0.0	4
206	Preparation and reactivity of metal-containing monomers. 8. Polymerization of transition metal acrylates. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1988, 37, 1352-1357.	0.0	7
207	Preparation and reactivity of metal-containing monomers. Communication 6. Polymerization of metal-containing monomers based on alkoxy derivatives of Ti(IV) and some properties of the products obtained. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1987, 36, 1612-1616.	0.0	2
208	Isolation and reactivity of metal-containing monomers. Communication 5. Hydrogenation of acrylates of transition metals. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1986, 35, 2318-2320.	0.0	0
209	Preparation and reactivity of metal-containing monomers. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1985, 34, 411-415.	0.0	1
210	Magnetic Metallopolymer Nanocomposites: Preparation and Properties. , 0, , 59-85.		3
211	Tailoring of the Magnetic Properties of Co, Fe and Ni Nanocrystallites. Materials Science Forum, 0, 636-637, 671-675.	0.3	3
212	New Mixed-Ligand Metal-Containing Monomer Based on Cobalt Acrylate and 4-Phenyl-2,2':6',2â€3-Terpyridine Ligand: Synthesis, Characteristics and Thermal Properties. Key Engineering Materials, 0, 899, 37-44.	0.4	6