
Rikard Emanuelsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4658257/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of a porphyrin-functionalized conducting polymer: A first step towards sustainable electrocatalysis. Electrochimica Acta, 2022, 424, 140616.	2.6	4
2	Conjugated redox polymer with poly(3,4-ethylenedioxythiophene) backbone and hydroquinone pendant groups as the solid contact in potassium-selective electrodes. Sensors and Actuators B: Chemical, 2021, 329, 129231.	4.0	14
3	An Alternative to Carbon Additives: The Fabrication of Conductive Layers Enabled by Soluble Conducting Polymer Precursors – A Case Study for Organic Batteries. ACS Applied Materials & Interfaces, 2021, 13, 5349-5356.	4.0	11
4	Rocking-Chair Proton Batteries with Conducting Redox Polymer Active Materials and Protic Ionic Liquid Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 19099-19108.	4.0	27
5	A conducting additive-free high potential quinone-based conducting redox polymer as lithium ion battery cathode. Electrochimica Acta, 2021, 391, 138901.	2.6	6
6	Conducting Redox Polymer as Organic Anode Material for Polymerâ€Manganese Secondary Batteries. ChemElectroChem, 2020, 7, 3336-3340.	1.7	17
7	A crosslinked conducting polymer with well-defined proton trap function for reversible proton cycling in aprotic environments. Journal of Materials Chemistry A, 2020, 8, 12114-12123.	5.2	5
8	Effect of Cycling Ion and Solvent on the Redox Chemistry of Substituted Quinones and Solvent-Induced Breakdown of the Correlation between Redox Potential and Electron-Withdrawing Power of Substituents. Journal of Physical Chemistry C, 2020, 124, 13609-13617.	1.5	22
9	An Aqueous Conducting Redoxâ€Polymerâ€Based Proton Battery that Can Withstand Rapid Constantâ€Voltage Charging and Subâ€Zero Temperatures. Angewandte Chemie, 2020, 132, 9718-9725.	1.6	18
10	An Aqueous Conducting Redoxâ€Polymerâ€Based Proton Battery that Can Withstand Rapid Constantâ€Voltage Charging and Subâ€Zero Temperatures. Angewandte Chemie - International Edition, 2020, 59, 9631-9638.	7.2	80
11	Conducting Redox Polymer as a Robust Organic Electrodeâ€Active Material in Acidic Aqueous Electrolyte towards Polymer–Air Secondary Batteries. ChemSusChem, 2020, 13, 2280-2285.	3.6	25
12	Characterization of PEDOT-Quinone conducting redox polymers in water-in-salt electrolytes for safe and high-energy Li-ion batteries. Electrochemistry Communications, 2019, 105, 106489.	2.3	30
13	Redox-State-Dependent Interplay between Pendant Group and Conducting Polymer Backbone in Quinone-Based Conducting Redox Polymers for Lithium Ion Batteries. ACS Applied Energy Materials, 2019, 2, 7162-7170.	2.5	17
14	In situ Investigations of a Proton Trap Material: A PEDOT-Based Copolymer with Hydroquinone and Pyridine Side Groups Having Robust Cyclability in Organic Electrolytes and Ionic Liquids. ACS Applied Energy Materials, 2019, 2, 4486-4495.	2.5	15
15	Investigating electron transport in a PEDOT/Quinone conducting redox polymer with in situ methods. Electrochimica Acta, 2019, 308, 277-284.	2.6	28
16	Quinone based conducting redox polymers for electrical energy storage. Russian Journal of Electrochemistry, 2017, 53, 8-15.	0.3	21
17	Unraveling factors leading to efficient norbornadiene–quadricyclane molecular solar-thermal energy storage systems. Journal of Materials Chemistry A, 2017, 5, 12369-12378.	5.2	65
18	Characterization of PEDOT-Quinone Conducting Redox Polymers for Water Based Secondary Batteries, Electrochimica Acta, 2017, 235, 356-364.	2.6	54

RIKARD EMANUELSSON

#	Article	IF	CITATIONS
19	An All-Organic Proton Battery. Journal of the American Chemical Society, 2017, 139, 4828-4834.	6.6	194
20	The Proton Trap Technology—Toward High Potential Quinoneâ€Based Organic Energy Storage. Advanced Energy Materials, 2017, 7, 1700259.	10.2	20
21	A Computational Investigation of the Substituent Effects on Geometric, Electronic, and Optical Properties of Siloles and 1,4-Disilacyclohexa-2,5-dienes. Molecules, 2017, 22, 370.	1.7	13
22	A versatile route to polythiophenes with functional pendant groups using alkyne chemistry. Beilstein Journal of Organic Chemistry, 2016, 12, 2682-2688.	1.3	11
23	Expanding the (cross-)hyperconjugation of 1,4-disilacyclohexa-2,5-dienes to larger monomers and oligomers: a computational investigation. RSC Advances, 2016, 6, 36961-36970.	1.7	8
24	Enthalpic versus Entropic Contribution to the Quinone Formal Potential in a Polypyrrole-Based Conducting Redox Polymer. Journal of Physical Chemistry C, 2016, 120, 21178-21183.	1.5	17
25	A computational study of potential molecular switches that exploit Baird's rule on excited-state aromaticity and antiaromaticity. Faraday Discussions, 2014, 174, 105-124.	1.6	22
26	Configuration―and Conformationâ€Dependent Electronicâ€Structure Variations in 1,4â€Disubstituted Cyclohexanes Enabled by a Carbonâ€ŧoâ€Silicon Exchange. Chemistry - A European Journal, 2014, 20, 9304-9311.	1.7	20
27	1,4-Disilacyclohexa-2,5-diene: a molecular building block that allows for remarkably strong neutral cyclic cross-hyperconjugation. Chemical Science, 2014, 5, 360-371.	3.7	18
28	Impact of Ground―and Excitedâ€State Aromaticity on Cyclopentadiene and Silole Excitation Energies and Excitedâ€State Polarities. Chemistry - A European Journal, 2014, 20, 9295-9303.	1.7	61
29	Optimization of the Cyclic Cross-Hyperconjugation in 1,4-Ditetrelcyclohexa-2,5-dienes. Organometallics, 2014, 33, 2997-3004.	1.1	15
30	In Search of Flexible Molecular Wires with Near Conformer-Independent Conjugation and Conductance: A Computational Study. Journal of Physical Chemistry C, 2014, 118, 5637-5649.	1.5	12
31	Charge transfer through cross-hyperconjugated versus cross-ï€-conjugated bridges: an intervalence charge transfer study. Chemical Science, 2013, 4, 3522.	3.7	44
32	Conductance through Carbosilane Cage Compounds: A Computational Investigation. Journal of Physical Chemistry C, 2013, 117, 21692-21699.	1.5	16
33	Coupling of Disilane and Trisilane Segments Through Zero, One, Two, and Three Disilanyl Bridges in Cyclic and Bicyclic Saturated Carbosilanes. Organometallics, 2013, 32, 396-405.	1.1	22
34	Crossâ€Hyperconjugation: An Unexplored Orbital Interaction between Ï€â€Conjugated and Saturated Molecular Segments. Angewandte Chemie - International Edition, 2013, 52, 983-987.	7.2	35
35	Investigation of α-phenylnorstatine and α-benzylnorstatine as transition state isostere motifs in the search for new BACE-1 inhibitors. Bioorganic and Medicinal Chemistry, 2011, 19, 145-155.	1.4	18