
Jinlong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4658106/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chemical Reviews, 2018, 118, 6337-6408.	23.0	1,552
2	Design Strategies toward Advanced MOFâ€Derived Electrocatalysts for Energy onversion Reactions. Advanced Energy Materials, 2017, 7, 1700518.	10.2	539
3	Graphitic Carbon Nitride (g ₃ N ₄)â€Derived Nâ€Rich Graphene with Tuneable Interlayer Distance as a Highâ€Rate Anode for Sodiumâ€Ion Batteries. Advanced Materials, 2019, 31, e1901261.	11.1	362
4	S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH. Nano Energy, 2017, 40, 264-273.	8.2	335
5	Two-dimensional metal–organic frameworks with high oxidation states for efficient electrocatalytic urea oxidation. Chemical Communications, 2017, 53, 10906-10909.	2.2	328
6	Self-Supported Earth-Abundant Nanoarrays as Efficient and Robust Electrocatalysts for Energy-Related Reactions. ACS Catalysis, 2018, 8, 6707-6732.	5.5	320
7	Ordered Macro–Microporous Metal–Organic Framework Single Crystals and Their Derivatives for Rechargeable Aluminum-Ion Batteries. Journal of the American Chemical Society, 2019, 141, 14764-14771.	6.6	226
8	NiO as a Bifunctional Promoter for RuO ₂ toward Superior Overall Water Splitting. Small, 2018, 14, e1704073.	5.2	214
9	Engineering pristine 2D metal–organic framework nanosheets for electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 8143-8170.	5.2	180
10	Engineering 2D Metal–Organic Framework/MoS ₂ Interface for Enhanced Alkaline Hydrogen Evolution. Small, 2019, 15, e1805511.	5.2	169
11	High-sensitivity paracetamol sensor based on Pd/graphene oxide nanocomposite as an enhanced electrochemical sensing platform. Biosensors and Bioelectronics, 2014, 54, 468-475.	5.3	160
12	A 2D metal–organic framework/Ni(OH) ₂ heterostructure for an enhanced oxygen evolution reaction. Nanoscale, 2019, 11, 3599-3605.	2.8	131
13	Identification of pH-dependent synergy on Ru/MoS ₂ interface: a comparison of alkaline and acidic hydrogen evolution. Nanoscale, 2017, 9, 16616-16621.	2.8	120
14	Nanostructured 2D Materials: Prospective Catalysts for Electrochemical CO ₂ Reduction. Small Methods, 2017, 1, 1600006.	4.6	112
15	Structure Engineering of MoS ₂ via Simultaneous Oxygen and Phosphorus Incorporation for Improved Hydrogen Evolution. Small, 2020, 16, e1905738.	5.2	112
16	Free-standing single-crystalline NiFe-hydroxide nanoflake arrays: a self-activated and robust electrocatalyst for oxygen evolution. Chemical Communications, 2018, 54, 463-466.	2.2	107
17	Facile synthesis of $\hat{1}\pm$ -MoO3 nanobelts and their pseudocapacitive behavior in an aqueous Li2SO4 solution. Journal of Materials Chemistry A, 2013, 1, 2588.	5.2	105
18	In-situ synthesis of free-standing FeNi-oxyhydroxide nanosheets as a highly efficient electrocatalyst for water oxidation. Chemical Engineering Journal, 2020, 395, 125180.	6.6	100

Jinlong Liu

#	Article	IF	CITATIONS
19	Unveiling the Advances of Nanostructure Design for Alloyâ€Type Potassiumâ€Ion Battery Anodes via Inâ€Situ TEM. Angewandte Chemie - International Edition, 2020, 59, 14504-14510.	7.2	82
20	Epitaxially Grown Heterostructured SrMn ₃ O _{6â^'<i>x</i>} ‧rMnO ₃ with Highâ€Valence Mn ^{3+/4+} for Improved Oxygen Reduction Catalysis. Angewandte Chemie - International Edition, 2021, 60, 22043-22050.	7.2	78
21	Structural and Electronic Engineering of Ir-Doped Ni-(Oxy)hydroxide Nanosheets for Enhanced Oxygen Evolution Activity. ACS Catalysis, 2021, 11, 5386-5395.	5.5	75
22	Central metal and ligand effects on oxygen electrocatalysis over 3d transition metal single-atom catalysts: A theoretical investigation. Chemical Engineering Journal, 2022, 427, 132038.	6.6	65
23	Designed synthesis of TiO2-modified iron oxides on/among carbon nanotubes as a superior lithium-ion storage material. Journal of Materials Chemistry A, 2014, 2, 11372.	5.2	58
24	Designed synthesis of a novel BiVO4–Cu2O–TiO2 as an efficient visible-light-responding photocatalyst. Journal of Colloid and Interface Science, 2015, 444, 58-66.	5.0	56
25	Self-Supported Hierarchical IrO ₂ @NiO Nanoflake Arrays as an Efficient and Durable Catalyst for Electrochemical Oxygen Evolution. ACS Applied Materials & Interfaces, 2019, 11, 25854-25862.	4.0	56
26	Self-supported nickel iron oxide nanospindles with high hydrophilicity for efficient oxygen evolution. Chemical Communications, 2019, 55, 10860-10863.	2.2	50
27	Phosphate ion functionalized CoP nanowire arrays for efficient alkaline hydrogen evolution. Chemical Communications, 2020, 56, 7159-7162.	2.2	50
28	Oxidant-assisted direct-sulfidization of nickel foam toward a self-supported hierarchical Ni3S2@Ni electrode for asymmetric all-solid-state supercapacitors. Journal of Power Sources, 2020, 448, 227408.	4.0	49
29	Unveiling the Advances of Nanostructure Design for Alloyâ€Type Potassiumâ€Ion Battery Anodes via Inâ€Situ TEM. Angewandte Chemie, 2020, 132, 14612-14618.	1.6	47
30	Complex alloy nanostructures as advanced catalysts for oxygen electrocatalysis: from materials design to applications. Journal of Materials Chemistry A, 2020, 8, 23142-23161.	5.2	46
31	Pt nanoclusters anchored on ordered macroporous nitrogen-doped carbon for accelerated water dissociation toward superior alkaline hydrogen production. Chemical Engineering Journal, 2022, 436, 135186.	6.6	38
32	Rationally constructing CoO and CoSe2 hybrid with CNTs-graphene for impressively enhanced oxygen evolution and DFT calculations. Chemical Engineering Journal, 2021, 422, 129982.	6.6	33
33	Facile assembly of a 3D rGO/MWCNTs/Fe2O3 ternary composite as the anode material for high-performance lithium ion batteries. RSC Advances, 2013, 3, 15457.	1.7	29
34	A glassy carbon electrode modified with \hat{l}^2 -cyclodextin, multiwalled carbon nanotubes and graphene oxide for sensitive determination of 1,3-dinitrobenzene. Mikrochimica Acta, 2014, 181, 1369-1377.	2.5	28
35	Self-assembly of nano/micro-structured Fe ₃ O ₄ microspheres among 3D rGO/CNTs hierarchical networks with superior lithium storage performances. Nanotechnology, 2014, 25, 225401.	1.3	27
36	Synergistically coupling Pt with Ni towards accelerated water dissociation for enhanced alkaline hydrogen evolution. Journal of Materials Chemistry A, 2022, 10, 13727-13734.	5.2	25

Jinlong Liu

#	Article	IF	CITATIONS
37	Efficient Surface Modulation of Single-Crystalline Na ₂ Ti ₃ O ₇ Nanotube Arrays with Ti ³⁺ Self-Doping toward Superior Sodium Storage. , 2019, 1, 389-398.		24
38	FeCoNi nanoalloys embedded in hierarchical N-rich carbon matrix with enhanced oxygen electrocatalysis for rechargeable Zn-air batteries. Journal of Materials Chemistry A, 2021, 9, 27701-27708.	5.2	22
39	One-step solution-phase synthesis of Co3O4/RGO/acetylene black as a high-performance catalyst for oxygen reduction reaction. RSC Advances, 2014, 4, 18286.	1.7	14
40	Highly electrocatalytic performance of bimetallic Co–Fe sulfide nanoparticles encapsulated in N-doped carbon nanotubes on reduced graphene oxide for oxygen evolution. Journal of Alloys and Compounds, 2021, 881, 160667.	2.8	13
41	Epitaxially Grown Heterostructured SrMn 3 O 6â^ x â€5rMnO 3 with Highâ€Valence Mn 3+/4+ for Improved Oxygen Reduction Catalysis. Angewandte Chemie, 2021, 133, 22214-22221.	1.6	12
42	Sodium 5-sulfosalicylate-assisted hydrothermal synthesis of a self-supported Co3S4â^'Ni3S2@nickel foam electrode for all-solid-state asymmetric supercapacitors. Journal of Alloys and Compounds, 2021, 889, 161661.	2.8	11
43	Experimental and Theoretical Insights into Enhanced Hydrogen Evolution over PtCo Nanoalloys Anchored on a Nitrogen-Doped Carbon Matrix. Journal of Physical Chemistry Letters, 2022, 13, 5195-5203.	2.1	7
44	Innenrücktitelbild: Unveiling the Advances of Nanostructure Design for Alloyâ€Type Potassiumâ€lon Battery Anodes via Inâ€Situ TEM (Angew. Chem. 34/2020). Angewandte Chemie, 2020, 132, 14801-14801.	1.6	0