Eric E Fullerton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4658033/publications.pdf

Version: 2024-02-01

364 papers 21,637 citations

72 h-index 135 g-index

372 all docs

372 docs citations

times ranked

372

14399 citing authors

#	Article	IF	CITATIONS
1	Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nature Materials, 2006, 5, 210-215.	27.5	1,148
2	Interface-induced phenomena in magnetism. Reviews of Modern Physics, 2017, 89, .	45.6	672
3	Structural refinement of superlattices from x-ray diffraction. Physical Review B, 1992, 45, 9292-9310.	3.2	644
4	Magnetic recording: advancing into the future. Journal Physics D: Applied Physics, 2002, 35, R157-R167.	2.8	575
5	All-optical control of ferromagnetic thin films and nanostructures. Science, 2014, 345, 1337-1340.	12.6	524
6	Engineered materials for all-optical helicity-dependent magnetic switching. Nature Materials, 2014, 13, 286-292.	27 . 5	507
7	Exchange-spring behavior in epitaxial hard/soft magnetic bilayers. Physical Review B, 1998, 58, 12193-12200.	3.2	452
8	Direct observation of the alignment of ferromagnetic spins by antiferromagnetic spins. Nature, 2000, 405, 767-769.	27.8	441
9	Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. Nature Nanotechnology, 2014, 9, 48-53.	31.5	428
10	Hard/soft magnetic heterostructures: model exchange-spring magnets. Journal of Magnetism and Magnetic Materials, 1999, 200, 392-404.	2.3	400
11	Roughness and giant magnetoresistance in Fe/Cr superlattices. Physical Review Letters, 1992, 68, 859-862.	7.8	397
12	Cargoâ€Towing Fuelâ€Free Magnetic Nanoswimmers for Targeted Drug Delivery. Small, 2012, 8, 460-467.	10.0	393
13	FeRh/FePt exchange spring films for thermally assisted magnetic recording media. Applied Physics Letters, 2003, 82, 2859-2861.	3.3	384
14	Device implications of spin-transfer torques. Journal of Magnetism and Magnetic Materials, 2008, 320, 1217-1226.	2.3	369
15	Observation of Antiferromagnetic Domains in Epitaxial Thin Films. Science, 2000, 287, 1014-1016.	12.6	307
16	Polymer Mediated Self-Assembly of Magnetic Nanoparticles. Journal of the American Chemical Society, 2002, 124, 2884-2885.	13.7	299
17	The 2017 Magnetism Roadmap. Journal Physics D: Applied Physics, 2017, 50, 363001.	2.8	279
18	Perpendicular Exchange Bias of Co/PtMultilayers. Physical Review Letters, 2001, 87, 087202.	7.8	271

#	Article	IF	Citations
19	Magnetization reversal ofCoâ^•Ptmultilayers: Microscopic origin of high-field magnetic irreversibility. Physical Review B, 2004, 70, .	3.2	268
20	Antiferromagnetically coupled magnetic media layers for thermally stable high-density recording. Applied Physics Letters, 2000, 77, 3806-3808.	3.3	261
21	Domain structure and magnetization reversal of antiferromagnetically coupled perpendicular anisotropy films. Journal of Magnetism and Magnetic Materials, 2007, 319, 13-55.	2.3	238
22	Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14206-14211.	7.1	235
23	Temperature and field hysteresis of the antiferromagnetic-to-ferromagnetic phase transition in epitaxial FeRh films. Physical Review B, 2005, 72, .	3.2	214
24	Reversible Switching of Interlayer Exchange Coupling through Atomically Thin VO2 via Electronic State Modulation. Matter, 2020, 2, 1582-1593.	10.0	202
25	Non-adiabatic spin-torques in narrow magnetic domain walls. Nature Physics, 2010, 6, 17-21.	16.7	194
26	Reducing the critical current for spin-transfer switching of perpendicularly magnetized nanomagnets. Applied Physics Letters, 2009, 94, .	3.3	171
27	Surface spin-flop transition in Fe/Cr(211) superlattices: Experiment and theory. Physical Review Letters, 1994, 72, 920-923.	7.8	162
28	Tailoring magnetic energies to form dipole skyrmions and skyrmion lattices. Physical Review B, 2017, 95, .	3.2	160
29	Light-induced magnetization reversal of high-anisotropy TbCo alloy films. Applied Physics Letters, 2012, 101, .	3.3	158
30	Oscillatory interlayer coupling and giant magnetoresistance in epitaxial Fe/Cr(211) and (100) superlattices. Physical Review B, 1993, 48, 15755-15763.	3.2	148
31	Separating dipolar broadening from the intrinsic switching field distribution in perpendicular patterned media. Applied Physics Letters, 2007, 90, 162516.	3.3	143
32	Non-oscillatory antiferromagnetic coupling in sputtered Fe/Si superlattices. Journal of Magnetism and Magnetic Materials, 1992, 117, L301-L306.	2.3	138
33	Anisotropy dependence of irreversible switching in Feâ^•SmCo and FeNiâ^•FePt exchange spring magnet films. Applied Physics Letters, 2005, 86, 262503.	3.3	134
34	Ultrafast magnetization dynamics in high perpendicular anisotropy [Coâ^•Pt]n multilayers. Journal of Applied Physics, 2007, 101, 09D102.	2.5	131
35	Antiferromagnetic MnO nanoparticles with ferrimagnetic <mmi:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">Mn</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mrow>shells:</mmi:math>	3.2	131
36	Soubly inverted core shell system. Physical Review 8, 2003, 77, Suppression of Biquadratic Coupling in Fe/Cr(001) Superlattices below the NÃ@el Transition of Cr. Physical Review Letters, 1995, 75, 330-333.	7.8	130

#	Article	IF	Citations
37	A new phase diagram for layered antiferromagnetic films. Nature Materials, 2003, 2, 112-116.	27.5	130
38	Spin-transfer pulse switching: From the dynamic to the thermally activated regime. Applied Physics Letters, 2010, 97, .	3.3	128
39	Ferromagnetic resonance linewidth in ultrathin films with perpendicular magnetic anisotropy. Physical Review B, 2009, 80, .	3.2	124
40	Photoinduced antiferromagnetic interlayer coupling in Fe/(Fe-Si) superlattices. Physical Review Letters, 1993, 71, 185-188.	7.8	123
41	Spin-Density-Wave Antiferromagnetism of Cr in Fe/Cr(001) Superlattices. Physical Review Letters, 1996, 77, 1382-1385.	7.8	120
42	Structure and magnetic properties of exchange-spring Sm–Co/Co superlattices. Applied Physics Letters, 1998, 72, 380-382.	3.3	115
43	Interfacial roughness of sputtered multilayers: Nb/Si. Physical Review B, 1993, 48, 17432-17444.	3.2	112
44	High coercivity, epitaxial Sm–Co films with uniaxial in-plane anisotropy. Applied Physics Letters, 1997, 71, 1579-1581.	3.3	112
45	Direct Imaging and Determination of the Uncompensated Spin Density in Exchange-BiasedCoO/(CoPt)Multilayers. Physical Review Letters, 2003, 91, 267202.	7.8	106
46	Dynamic switching of the spin circulation in tapered magnetic nanodisks. Nature Nanotechnology, 2013, 8, 341-346.	31.5	106
47	Antiferromagnetic LaFeO ₃ thin films and their effect on exchange bias. Journal of Physics Condensed Matter, 2008, 20, 264014.	1.8	103
48	Dichroic coherent diffractive imaging. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13393-13398.	7.1	103
49	Fe Spin Reorientation across the Metamagnetic Transition in Strained FeRh Thin Films. Physical Review Letters, 2012, 109, 117201.	7.8	103
50	150% magnetoresistance in sputtered Fe/Cr(100) superlattices. Applied Physics Letters, 1993, 63, 1699-1701.	3.3	102
51	Threshold currents to move domain walls in films with perpendicular anisotropy. Applied Physics Letters, 2007, 90, 072508.	3.3	101
52	Disorder-Induced Microscopic Magnetic Memory. Physical Review Letters, 2005, 94, 017202.	7.8	100
53	Domain Walls in Antiferromagnetically Coupled Multilayer Films. Physical Review Letters, 2003, 91, 197203.	7.8	92
54	Soft-x-ray small-angle scattering as a sensitive probe of magnetic and charge heterogeneity. Physical Review B, 2001, 64, .	3.2	91

#	Article	IF	CITATIONS
55	Structural and Magnetic Dynamics of a Laser Induced Phase Transition in FeRh. Physical Review Letters, 2012, 108, 087201.	7.8	91
56	Structure and magnetism of epitaxially strained Pd(001) films on Fe(001): Experiment and theory. Physical Review B, 1995, 51, 6364-6378.	3.2	90
57	Coercivity tuning in Co/Pd multilayer based bit patterned media. Applied Physics Letters, 2009, 95, 232505.	3.3	90
58	Low depinning fields in Ta-CoFeB-MgO ultrathin films with perpendicular magnetic anisotropy. Applied Physics Letters, 2013, 103, 182401.	3.3	90
59	Ultrafast spin-transfer switching in spin valve nanopillars with perpendicular anisotropy. Applied Physics Letters, 2010, 96, .	3.3	89
60	Temperature-dependent biquadratic coupling in antiferromagnetically coupled Fe/FeSi multilayers. Physical Review B, 1996, 53, 5112-5115.	3.2	86
61	X-ray studies of aligned magnetic stripe domains in perpendicular multilayers. Physica B: Condensed Matter, 2003, 336, 136-144.	2.7	86
62	Dynamics of spin torque switching in all-perpendicular spin valve nanopillars. Journal of Magnetism and Magnetic Materials, 2014, 358-359, 233-258.	2.3	84
63	Quantifying perpendicular magnetic anisotropy at the Fe-MgO(001) interface. Applied Physics Letters, 2013, 102, .	3.3	83
64	Quasistatic X-Ray Speckle Metrology of Microscopic Magnetic Return-Point Memory. Physical Review Letters, 2003, 90, 175502.	7.8	82
65	Analyzing Spin Selectivity in DNA-Mediated Charge Transfer <i>via</i> Fluorescence Microscopy. ACS Nano, 2017, 11, 7516-7526.	14.6	82
66	State-of-the-Art Magnetic Hard Disk Drives. MRS Bulletin, 2006, 31, 379-383.	3.5	81
67	Growth, structural, and magnetic properties of high coercivity Co/Pt multilayers. Journal of Applied Physics, 2001, 89, 7525-7527.	2.5	80
68	Xâ€ray Fraunhofer diffraction patterns from a thinâ€film waveguide. Applied Physics Letters, 1995, 67, 3647-3649.	3.3	79
69	Magnetic reversal of perpendicularly-biased Co/Pt multilayers. Physical Review B, 2002, 65, .	3.2	79
70	Thermodynamic Measurements of Fe-Rh Alloys. Physical Review Letters, 2012, 109, 255901.	7.8	77
71	Ultralow Thermal Conductivity of Multilayers with Highly Dissimilar Debye Temperatures. Nano Letters, 2014, 14, 2448-2455.	9.1	77
72	Growthâ€induced uniaxial inâ€plane magnetic anisotropy for ultrathin Fe deposited on MgO(001) by obliqueâ€incidence molecular beam epitaxy. Applied Physics Letters, 1995, 66, 2140-2142.	3.3	76

#	Article	IF	CITATIONS
73	Switching behavior of Fe-Pt/Ni-Fe exchange-spring films studied by resonant soft-x-ray magneto-optical Kerr effect. Physical Review B, 2000, 62, 11694-11698.	3.2	73
74	Pinpointing Chiral Structures with Front-Back Polarized Neutron Reflectometry. Physical Review Letters, 2002, 88, 067201.	7.8	71
75	Evidence for the supermodulus effect and enhanced hardness in metallic superlattices. Physical Review B, 1991, 44, 13760-13763.	3.2	70
76	Single‧hot Multiâ€Level Allâ€Optical Magnetization Switching Mediated by Spin Transport. Advanced Materials, 2018, 30, e1804004.	21.0	69
77	Disorder-induced magnetic memory: Experiments and theories. Physical Review B, 2007, 75, .	3.2	68
78	Electronic Structure Changes across the Metamagnetic Transition in FeRh via Hard X-Ray Photoemission. Physical Review Letters, 2012, 108, 257208.	7.8	68
79	Domain Wall Creation in Nanostructures Driven by a Spin-Polarized Current. Physical Review Letters, 2006, 96, 186604.	7.8	67
80	Improved media performance in optimally coupled exchange spring layer media. Applied Physics Letters, 2008, 93, .	3.3	67
81	Synthesizing skyrmion bound pairs in Fe-Gd thin films. Applied Physics Letters, 2016, 109, .	3.3	67
82	Magnetic decoupling in sputtered Fe/Si superlattices and multilayers. Journal of Applied Physics, 1993, 73, 6335-6337.	2.5	66
83	Domain size criterion for the observation of all-optical helicity-dependent switching in magnetic thin films. Physical Review B, 2016, 94, .	3.2	66
84	A general approach to the epitaxial growth of rareâ€earthâ€transitionâ€metal films. Applied Physics Letters, 1996, 69, 2438-2440.	3.3	65
85	HighTcthin films with roughness smaller than one unit cell. Applied Physics Letters, 1992, 60, 120-122.	3.3	64
86	Luminescent hyperbolic metasurfaces. Nature Communications, 2017, 8, 13793.	12.8	63
87	Coercivity mechanisms in positive exchange-biased Co films and Co/Pt multilayers. Physical Review B, 2002, 65, .	3.2	62
88	Spintronics, Magnetoresistive Heads, and the Emergence of the Digital World. Proceedings of the IEEE, 2016, 104, 1787-1795.	21.3	62
89	Structure of high-Tcsuperlattices. Physical Review Letters, 1992, 69, 2859-2862.	7.8	61
90	Accumulative Magnetic Switching of Ultrahigh-Density Recording Media by Circularly Polarized Light. Physical Review Applied, 2016, 6, .	3.8	61

#	Article	IF	Citations
91	Multiscale dynamics of helicity-dependent all-optical magnetization reversal in ferromagnetic Co/Pt multilayers. Physical Review B, 2017, 96, .	3.2	61
92	Observation of Pure Nuclear Diffraction from a Fe/Cr Antiferromagnetic Multilayer. Physical Review Letters, 1995, 74, 3475-3478.	7.8	59
93	All-optical switching in granular ferromagnets caused by magnetic circular dichroism. Scientific Reports, 2016, 6, 30522.	3.3	59
94	Strong perpendicular magnetic anisotropy in Ni/Co(111) single crystal superlattices. Applied Physics Letters, 2009, 94, 262504.	3.3	58
95	Direct Demonstration of Topological Stability of Magnetic Skyrmions <i>via</i> Topology Manipulation. ACS Nano, 2020, 14, 3251-3258.	14.6	57
96	Colossal magnetic phase transition asymmetry in mesoscale FeRh stripes. Nature Communications, 2016, 7, 13113.	12.8	56
97	Helicity-dependent all-optical domain wall motion in ferromagnetic thin films. Physical Review B, 2018, 97, .	3.2	53
98	All-Sputtered, Superior Power Density Thin-Film Solid Oxide Fuel Cells with a Novel Nanofibrous Ceramic Cathode. Nano Letters, 2020, 20, 2943-2949.	9.1	53
99	Electrical characterization of all-optical helicity-dependent switching in ferromagnetic Hall crosses. Applied Physics Letters, 2016, 108, .	3.3	52
100	Photospintronics: Magnetic Field-Controlled Photoemission and Light-Controlled Spin Transport in Hybrid Chiral Oligopeptide-Nanoparticle Structures. Nano Letters, 2016, 16, 2806-2811.	9.1	52
101	High-coercivity, c-axis oriented Nd2Fe14B films grown by molecular beam epitaxy. Journal of Applied Physics, 1997, 81, 4441-4443.	2.5	51
102	Antiferromagnetic structure of FePt3 films studied by neutron scattering. Physical Review B, 2001, 63, .	3.2	51
103	Nanosecond X-Ray Photon Correlation Spectroscopy on Magnetic Skyrmions. Physical Review Letters, 2017, 119, 067403.	7.8	51
104	Brillouin light scattering study of Fe/Cr/Fe (211) and (100) trilayers. Physical Review B, 1996, 54, 3385-3393.	3.2	50
105	Subpicosecond magnetization dynamics in TbCo alloys. Physical Review B, 2014, 89, .	3.2	50
106	Spin-Dependent Ionization of Chiral Molecular Films. Journal of the American Chemical Society, 2019, 141, 3863-3874.	13.7	50
107	Exchange-spring systems: Coupling of hard and soft ferromagnets as measured by magnetization and Brillouin light scattering (invited). Journal of Applied Physics, 1999, 85, 5901-5904.	2.5	49
108	Nanostructuring Multilayer Hyperbolic Metamaterials for Ultrafast and Bright Green InGaN Quantum Wells. Advanced Materials, 2018, 30, e1706411.	21.0	49

#	Article	IF	CITATIONS
109	Polarization effects in coherent scattering from magnetic specimen: Implications for x-ray holography, lensless imaging, and correlation spectroscopy. Physical Review B, 2003, 68, .	3.2	48
110	Electric-field modification of magnetism in a thin CoPd film. Physical Review B, 2010, 82, .	3.2	48
111	Beyond a phenomenological description of magnetostriction. Nature Communications, 2018, 9, 388.	12.8	48
112	Polarized-neutron-reflectivity confirmation of 90° magnetic structure in Fe/Cr(001) superlattices. Physical Review B, 1996, 53, 2474-2480.	3.2	47
113	Model of the magnetic properties of FePt granular media. Journal of Applied Physics, 2002, 91, 6866.	2.5	45
114	Cumulative minor loop growth in Co/Pt and Co/Pd multilayers. Physical Review B, 2010, 82, .	3.2	45
115	Co/Ni(111) superlattices studied by microscopy, x-ray absorption, and <i> ab initio </i> > calculations. Physical Review B, 2012, 86, .	3.2	45
116	Exchange-spring behavior in epitaxial hard/soft magnetic bilayer films. Journal of Applied Physics, 1998, 83, 6238-6240.	2.5	44
117	Oriented Growth of Single-Crystal Ni Nanowires onto Amorphous SiO ₂ . Nano Letters, 2010, 10, 5070-5075.	9.1	44
118	Photoinduced Enhancement of the Charge Density Wave Amplitude. Physical Review Letters, 2016, 117, 056401.	7.8	44
119	Resonant properties of dipole skyrmions in amorphous Fe/Gd multilayers. Physical Review B, 2017, 95, .	3.2	44
120	Room-temperature observation and current control of skyrmions in Pt/Co/Os/Pt thin films. Physical Review Materials, $2018, 2, .$	2.4	43
121	Ferromagnetism of FePt3 films induced by ion-beam irradiation. Journal of Magnetism and Magnetic Materials, 2003, 265, 1-6.	2.3	41
122	Microwave-assisted magnetization reversal and multilevel recording in composite media. Journal of Applied Physics, 2009, 105, .	2.5	41
123	Influence of structural disorder on magnetic domain formation in perpendicular anisotropy thin films. Physical Review B, 2013, 87, .	3.2	41
124	Microwave assisted magnetization reversal in composite media. Applied Physics Letters, 2009, 94, 202509.	3.3	40
125	Magnetotransport properties of epitaxial MgO(001)/FeRh films across the antiferromagnet to ferromagnet transition. Journal of Applied Physics, 2011, 109, .	2.5	40
126	Infrared spectra of giant magnetoresistance Fe/Cr/Fe trilayers. Physical Review B, 1998, 57, 2705-2708.	3.2	39

#	Article	IF	CITATIONS
127	Role of pinning in current driven domain wall motion in wires with perpendicular anisotropy. Applied Physics Letters, 2008, 93, 172513.	3.3	39
128	Ultra-thin Co/Pd multilayers with enhanced high-temperature annealing stability. Applied Physics Letters, 2013, 102 , .	3.3	38
129	Investigating the role of superdiffusive currents in laser induced demagnetization of ferromagnets with nanoscale magnetic domains. Scientific Reports, 2014, 4, 4658.	3.3	38
130	Exchange and anisotropy effects on spin waves in epitaxial Co films. Physical Review B, 1997, 56, 2617-2622.	3.2	37
131	Perpendicular magnetization of CoFeB on single-crystal MgO. Journal of Applied Physics, 2011, 109, .	2.5	37
132	Universal domain wall dynamics under electric field in Ta/CoFeB/MgO devices with perpendicular anisotropy. Nature Communications, 2016, 7, 13532.	12.8	37
133	THz emission from Co/Pt bilayers with varied roughness, crystal structure, and interface intermixing. Physical Review Materials, 2019, 3, .	2.4	37
134	Exchange Bias and Domain Evolution at 10Ânm Scales. Physical Review Letters, 2010, 105, 197201.	7.8	36
135	Perpendicular spin-torque switching with a synthetic antiferromagnetic reference layer. Applied Physics Letters, 2010, 96, .	3.3	36
136	Stable room-temperature ferromagnetic phase at the FeRh(100) surface. Scientific Reports, 2016, 6, 22383.	3.3	36
137	Quantitative X-Ray Diffraction From Superlattices. MRS Bulletin, 1992, 17, 33-38.	3.5	35
138	Epitaxial growth of bodyâ€centeredâ€cubic transition metal films and superlattices onto MgO (111), (011), and (001) substrates. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1995, 13, 276-281.	2.1	35
139	Low-frequency dynamic response and hysteresis in magnetic superlattices. Physical Review B, 1998, 57, 476-484.	3.2	35
140	Magnetic patterning of chemically-ordered CrPt3 films. Applied Physics Letters, 2001, 79, 1151-1153.	3.3	35
141	Interfacial magnetic domain wall formation in perpendicular-anisotropy, exchange-spring films. Applied Physics Letters, 2008, 92, 202507.	3.3	35
142	Monodispersed MnO nanoparticles with epitaxial Mn ₃ O ₄ shells. Journal Physics D: Applied Physics, 2008, 41, 134007.	2.8	34
143	Frustration driven stripe domain formation in Co/Pt multilayer films. Applied Physics Letters, 2009, 95, 022505.	3.3	34
144	Optically Induced Phase Change for Magnetoresistance Modulation. Advanced Quantum Technologies, 2020, 3, 1900104.	3.9	34

#	Article	IF	CITATIONS
145	Relationship between structural phase transitions and elastic anomalies in metallic superlattices. Journal of Applied Physics, 1993, 73, 7370-7375.	2.5	33
146	Interparticle magnetic correlations in dense Co nanoparticle assemblies. Physical Review B, 2005, 71, .	3.2	33
147	Magnetic phase transition in iron–rhodium thin films probed by ferromagnetic resonance. Journal Physics D: Applied Physics, 2013, 46, 245302.	2.8	33
148	A simple closed-form expression for the X-ray reflectivity from multilayers with cumulative roughness. Scripta Metallurgica Et Materialia, 1995, 33, 1603-1608.	1.0	31
149	Anisotropy determination in epitaxial Sm–Co/Fe exchange springs. Journal of Applied Physics, 2000, 87, 6686-6688.	2.5	31
150	Exchange bias in Fe[sub x]Zn[sub 1â^'x]F[sub 2]/Co bilayers. Journal of Applied Physics, 2002, 91, 7763.	2.5	31
151	The role of uncompensated spins in exchange biasing. Europhysics Letters, 2008, 81, 17001. Temperature-dependent magnetization reversal in < mml: math	2.0	31
152	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mi) 0="" 10="" 5<="" etqq0="" overlock="" rgbt="" td="" tf="" tj=""><td>50 <u>46</u>2 Td</td><td>(mathvariant</td></mml:mi)></mml:mrow></mml:mrow></mml:mrow>	50 <u>46</u> 2 Td	(mathvariant
153	mathvariant="normal">Rumultilayers. Physical Review B, 2008, 77, Spin-transfer-torque reversal in perpendicular anisotropy spin valves with composite free layers. Applied Physics Letters, 2011, 99, .	3.3	31
154	Dynamic coercivity measurements of antiferromagnetically coupled magnetic media layers. Applied Physics Letters, 2001, 78, 2748-2750.	3.3	30
155	Observation of x-ray radiation pressure effects on nanocrystals. Journal of Applied Physics, 2016, 120, 163102.	2.5	30
156	Realization of ordered magnetic skyrmions in thin films at ambient conditions. Physical Review Materials, 2019, 3, .	2.4	30
157	Probing the magnetic transitions in exchange-biasedFePt3/Febilayers. Physical Review B, 2002, 66, .	3.2	29
158	Cobalt–oxide underlayers for cobalt–ferrite pinned spin valves. Applied Physics Letters, 2002, 81, 520-522.	3.3	29
159	Magnetic Tuning of Biquadratic Exchange Coupling in Magnetic Thin Films. Physical Review Letters, 2003, 91, 097203.	7.8	29
160	The 2007 Nobel Prize in Physics: Magnetism and Transport at the Nanoscale. ACS Nano, 2007, 1, 384-389.	14.6	29
161	Testing spin-flip scattering as a possible mechanism of ultrafast demagnetization in ordered magnetic alloys. Physical Review B, 2014, 90, .	3.2	29
162	Spin-orbit torque induced dipole skyrmion motion at room temperature. Physical Review B, 2018, 98, .	3.2	29

#	Article	IF	CITATIONS
163	Telegraph noise due to domain wall motion driven by spin current in perpendicular magnetized nanopillars. Applied Physics Letters, 2009, 94, .	3.3	28
164	Quantum Sensing and Imaging of Spin–Orbitâ€Torqueâ€Driven Spin Dynamics in the Nonâ€Collinear Antiferromagnet Mn ₃ Sn. Advanced Materials, 2022, 34, e2200327.	21.0	28
165	Neutron diffraction and reflectivity studies of the Cr NÃ \otimes el transition in Fe/Cr (001) superlattices. Physica B: Condensed Matter, 1996, 221, 370-376.	2.7	27
166	Phase diagram of imperfect ferromagnetic/antiferromagnetic bilayers. Journal of Magnetism and Magnetic Materials, 1997, 165, 471-474.	2.3	27
167	Role of boron on grain sizes and magnetic correlation lengths in recording media as determined by soft x-ray scattering. Applied Physics Letters, 2002, 80, 1234-1236.	3.3	27
168	Interlayer coupling and magnetic reversal of antiferromagnetically coupled media. Applied Physics Letters, 2002, 80, 91-93.	3.3	27
169	Suppression of the perpendicular anisotropy at the CoO $N\tilde{A}$ ©el temperature in exchange-biased CoO/[Co/Pt] multilayers. Applied Physics Letters, 2009, 95, 132509.	3.3	27
170	Nano-Ceramic Cathodes via Co-sputtering of Gd–Ce Alloy and Lanthanum Strontium Cobaltite for Low-Temperature Thin-Film Solid Oxide Fuel Cells. ACS Applied Energy Materials, 2020, 3, 8135-8142.	5.1	27
171	Tunable surface plasmon polaritons in Ag composite films by adding dielectrics or semiconductors. Applied Physics Letters, 2011, 98, 243114.	3.3	26
172	Hysteretic Spin-Density-Wave Ordering in Confined Geometries. Physical Review Letters, 2003, 91, 237201.	7.8	25
173	Influence of interface exchange coupling in perpendicular anisotropy <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml< td=""><td>nťëxt>Pt<</td><td>1/25mml:mtext</td></mml<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	nťëxt>Pt<	1/25mml:mtext
174	State diagram of nanopillar spin valves with perpendicular magnetic anisotropy. Physical Review B, 2012, 86, .	3.2	25
175	Asymmetric switching behavior in perpendicularly magnetized spin-valve nanopillars due to the polarizer dipole field. Applied Physics Letters, 2012, 100, 062404.	3.3	25
176	Phase Coexistence and Kinetic Arrest in the Magnetostructural Transition of the Ordered Alloy FeRh. Scientific Reports, 2018, 8, 1778.	3.3	25
177	Magnons in antiferromagnetically coupled superlattices. Physical Review B, 1996, 53, 2627-2632.	3.2	24
178	Interplay between biquadratic coupling and the Néel transition inFe/Cr94Fe6(001)superlattices. Physical Review B, 1997, 56, 5468-5473.	3.2	24
179	Stokes–anti-Stokes Brillouin intensity asymmetry of spin-wave modes in ferromagnetic films and multilayers. Physical Review B, 2002, 65, .	3.2	24
180	Exchange-bias training effect in TbFeâ^•GdFe: Micromagnetic mechanism. Physical Review B, 2007, 76, .	3.2	24

#	Article	IF	CITATIONS
181	Tailoring magnetism in CoNi films with perpendicular anisotropy by ion irradiation. Journal of Applied Physics, 2008, 103, 07B529.	2.5	24
182	Breakdown of Poisson's effect in Nb/Cu superlattices. Physical Review B, 1993, 47, 12813-12819.	3.2	23
183	Perpendicular conductance and magnetic coupling in epitaxial Fe/MgO/Fe(100) trilayers. Journal of Applied Physics, 1997, 81, 795-798.	2.5	23
184	Distortion of the Stoner-Wohlfarth astroid by a spin-polarized current. Physical Review B, 2009, 79, .	3.2	23
185	Role of Dipolar Interactions on the Thermal Stability of High-Density Bit-Patterned Media. IEEE Magnetics Letters, 2012, 3, 4500204-4500204.	1.1	23
186	Room temperature giant magnetostriction in single-crystal nickel nanowires. NPG Asia Materials, 2019, 11, .	7.9	23
187	Graded magnetic materials. Journal Physics D: Applied Physics, 2021, 54, 303002.	2.8	23
188	Photoâ€induced antiferromagnetic interlayer coupling in Fe superlattices with iron silicide spacers (invited). Journal of Applied Physics, 1994, 75, 6169-6173.	2.5	22
189	Enhanced Co orbital moments in Co–rare-earth permanent-magnet films. Physical Review B, 1998, 57, 5291-5297.	3.2	22
190	Magnetic reversal and domain structure in perpendicular AF-coupled films. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 1-7.	2.3	22
191	Suppression of magnetic trench material in bit patterned media fabricated by blanket deposition onto prepatterned substrates. Applied Physics Letters, 2008, 93, 192501.	3.3	22
192	Thermal stability of patterned Co/Pd nanodot arrays. Applied Physics Letters, 2012, 100, .	3.3	22
193	Magnetic Switching in Granular FePt Layers Promoted by Near-Field Laser Enhancement. Nano Letters, 2017, 17, 2426-2432.	9.1	22
194	Microstructure and magneto-optical surface plasmon resonance of Co/Au multilayers. Journal of Physics Communications, 2018, 2, 055010.	1.2	22
195	Ultrafast kinetics of the antiferromagnetic-ferromagnetic phase transition in FeRh. Nature Communications, 2022, 13, .	12.8	22
196	Structure and magnetism of epitaxial rare-earth–transition-metal films. Journal of Applied Physics, 1997, 81, 5637-5639.	2.5	21
197	Mechanism of chirality reversal for planar interface domain walls in exchange-coupled hard/soft magnetic bilayers. Physical Review B, 2008, 78, .	3.2	21
198	Anomalously Weak Scattering in Metal-Semiconductor Multilayer Hyperbolic Metamaterials. Physical Review X, 2015, 5, .	8.9	21

#	Article	IF	Citations
199	Perpendicular magnetic anisotropy and microstructure properties of nanoscale Co/Au multilayers. Journal Physics D: Applied Physics, 2017, 50, 355002.	2.8	21
200	A Wearable Colorimetric Dosimeter to Monitor Sunlight Exposure. Advanced Materials Technologies, 2018, 3, 1800037.	5.8	21
201	Helicityâ€Preserving Metasurfaces for Magnetoâ€Optical Enhancement in Ferromagnetic [Pt/Co] <i>_N</i> > Films. Advanced Optical Materials, 2020, 8, 2001420.	7.3	21
202	X-ray-diffraction characterization and sound-velocity measurements of W/Ni multilayers. Physical Review B, 1993, 48, 2560-2567.	3.2	20
203	Co1â°xCrx/Pt multilayers as perpendicular recording media. Journal of Applied Physics, 2000, 87, 6364-6366.	2.5	20
204	Influence of lateral domains and interface domain walls on exchange-bias phenomena inGbFeâ^•TdFebilayers. Physical Review B, 2006, 74, .	3.2	20
205	Nonlinear and hysteretic exchange bias in antiferromagnetically coupled ferromagnetic bilayers. Physical Review B, 2008, 78, .	3.2	20
206	Increased magnetic damping in ultrathin films of Co2FeAl with perpendicular anisotropy. Applied Physics Letters, 2017, 110, .	3.3	20
207	Experimental Demonstration of Hyperbolic Metamaterial Assisted Illumination Nanoscopy. ACS Nano, 2018, 12, 11316-11322.	14.6	20
208	Coherent soft X-ray magnetic scattering. Synchrotron Radiation News, 2001, 14, 11-19.	0.8	19
209	Reversal modes of exchange-spring magnets revealed by torque magnetometry. Applied Physics Letters, 2001, 79, 3992-3994.	3.3	19
210	Resolving magnetic and chemical correlations in CoPtCr films using soft X-ray resonant scattering. Journal of Magnetism and Magnetic Materials, 2002, 240, 325-330.	2.3	19
211	Magnetic susceptibility measurements as a probe of spin transfer driven magnetization dynamics. Applied Physics Letters, 2010, 96, .	3.3	19
212	Ferromagnetic resonance study of Co/Pd/Co/Ni multilayers with perpendicular anisotropy irradiated with helium ions. Journal of Applied Physics, 2011, 109, .	2.5	19
213	Calorimetry of epitaxial thin films. Review of Scientific Instruments, 2011, 82, 023908.	1.3	19
214	Time-resolved magnetic relaxation of a nanomagnet on subnanosecond time scales. Physical Review B, 2012, 85, .	3.2	19
215	Shaping nanoscale magnetic domain memory in exchange-coupled ferromagnets by field cooling. Nature Communications, 2016, 7, 11648.	12.8	19
216	Manipulating exchange bias using all-optical helicity-dependent switching. Physical Review B, 2017, 96, .	3.2	19

#	Article	IF	CITATIONS
217	Magnetization reversal and confinement effects across the metamagnetic phase transition in mesoscale FeRh structures. Journal Physics D: Applied Physics, 2018, 51, 105001.	2.8	19
218	Orbital Domain Dynamics in Magnetite below the Verwey Transition. Physical Review Letters, 2018, 121, 177601.	7.8	19
219	Electrical control of coherent spin rotation of a single-spin qubit. Npj Quantum Information, 2020, 6,	6.7	19
220	Resonant X-ray reflectivity study of Fe/Cr superlattices. Physica B: Condensed Matter, 1996, 221, 411-415.	2.7	18
221	Paramagnetic FexTa1-x alloys for engineering of perpendicularly magnetized tunnel junctions. APL Materials, 2013, 1, .	5.1	18
222	Curvature-induced and thermal strain in polyhedral gold nanocrystals. Applied Physics Letters, 2014, 105, 173108.	3.3	18
223	Determination of magnetic anisotropy in Fe/Cu multilayers: Equivalence of dynamic and static measurements. Physical Review B, 1995, 52, 3045-3048.	3.2	17
224	The energy barriers in antiferromagnetically coupled media. Applied Physics Letters, 2003, 82, 3701-3703.	3.3	17
225	Laser induced phase transition in epitaxial FeRh layers studied by pump-probe valence band photoemission. Structural Dynamics, 2018, 5, 034501.	2.3	17
226	Antiferromagnetically coupled capped bit patterned media for high-density magnetic recording. Applied Physics Letters, 2011, 98, 012513.	3.3	16
227	Probing the three-dimensional strain inhomogeneity and equilibrium elastic properties of single crystal Ni nanowires. Applied Physics Letters, 2012, 101, .	3.3	16
228	Generation and manipulation of domain walls using a thermal gradient in a ferrimagnetic TbCo wire. Applied Physics Letters, 2015 , 106 , .	3.3	16
229	Synthesis of single-crystalline anisotropic gold nano-crystals via chemical vapor deposition. Journal of Applied Physics, 2016, 119, 174301.	2.5	16
230	Effect of high-energy ion irradiation on the elastic moduli of Ag/Co superlattices. Physical Review B, 1989, 39, 12966-12968.	3.2	15
231	Oscillatory interlayer magnetic coupling of sputtered Fe/Nb superlattices. Journal of Applied Physics, 1993, 73, 5969-5971.	2.5	15
232	Orientationally independent antiferromagnetic coupling in epitaxial Fe/Cr (211) and (100) superlattices. Journal of Applied Physics, 1994, 75, 6461-6463.	2.5	15
233	Magnetic memory in ferromagnetic thin films via exchange coupling. Physical Review B, 2008, 78, .	3.2	15
234	Thickness and Temperature Effects on Magnetic Properties and Roughness of ${m L}1_{0}$ -Ordered FePt Films. IEEE Transactions on Magnetics, 2010, 46, 2282-2285.	2.1	15

#	Article	IF	CITATIONS
235	Understanding improved electrochemical properties of NiO-doped NiF2–C composite conversion materials by X-ray absorption spectroscopy and pair distribution function analysis. Physical Chemistry Chemical Physics, 2014, 16, 3095.	2.8	15
236	Differential Charging in Photoemission from Mercurated DNA Monolayers on Ferromagnetic Films. Nano Letters, 2020, 20, 1218-1225.	9.1	15
237	Noninvasive measurements of spin transport properties of an antiferromagnetic insulator. Science Advances, 2022, 8, eabg8562.	10.3	15
238	Epitaxial growth of ultrathin MgO films on Fe(001) seed layers. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1995, 13, 301-304.	2.1	14
239	Magnetic phase separation in artificialA-type antiferromagnetic films. Physical Review B, 2007, 75, .	3.2	14
240	Core-Shell Structured Nanowire Spin Valves. IEEE Transactions on Magnetics, 2010, 46, 2209-2211.	2.1	14
241	Oscillating spatial dependence of domain memory in ferromagnetic films mapped via x-ray speckle correlation. Physical Review B, 2011, 83, .	3.2	14
242	Streamlined approach to mapping the magnetic induction of skyrmionic materials. Ultramicroscopy, 2017, 177, 78-83.	1.9	14
243	Quantitative characterization of epitaxial superlattices by xâ€ray diffraction and high resolution electron microscopy. Applied Physics Letters, 1993, 63, 482-484.	3.3	13
244	Depth-dependent magnetism of layered superconductors: Nb/Si. Journal of Applied Physics, 1998, 83, 6801-6803.	2.5	13
245	Biquadratic exchange coupling in an unequal Fe/Cr/Fe(100) trilayer. Journal of Magnetism and Magnetic Materials, 2001, 223, 284-292.	2.3	13
246	Thermal relaxation in antiferromagnetically coupled granular magnetic media. Physical Review B, 2002, 66, .	3.2	13
247	Rotational hysteresis of exchange-spring magnets. Journal Physics D: Applied Physics, 2002, 35, 2339-2343.	2.8	13
248	Effect of microwave irradiation on spin-torque-driven magnetization precession in nanopillars with magnetic perpendicular anisotropy. Physical Review B, 2011, 83, .	3.2	13
249	Reversal in Bit Patterned Media With Vertical and Lateral Exchange. IEEE Transactions on Magnetics, 2011, 47, 18-25.	2.1	13
250	Femtosecond photocurrents at the FeRh/Pt interface. Applied Physics Letters, 2020, 117, .	3.3	13
251	Experimental study of longitudinal exchange spring media. Journal of Applied Physics, 2006, 99, 08S310.	2.5	12
252	Controlled growth behavior of chemical vapor deposited Ni nanostructures. Philosophical Magazine, 2012, 92, 2173-2186.	1.6	12

#	Article	IF	Citations
253	Switching field distributions with spin transfer torques in perpendicularly magnetized spin-valve nanopillars. Physical Review B, 2014, 89, .	3.2	12
254	Dynamics and efficiency of magnetic vortex circulation reversal. Physical Review B, 2015, 91, .	3.2	12
255	3D Bragg coherent diffractive imaging of five-fold multiply twinned gold nanoparticle. Nanoscale, 2017, 9, 13153-13158.	5.6	12
256	Characterization of strain and its effects on ferromagnetic nickel nanocubes. AIP Advances, 2017, 7, 125025.	1.3	12
257	Skyrmion fluctuations at a first-order phase transition boundary. Applied Physics Letters, 2020, 116, .	3.3	12
258	Magnetic anisotropy, coupling, and transport in epitaxial Co/Cr superlattices on MgO(100) and (110) substrates. Journal of Applied Physics, 1997, 81, 5058-5060.	2.5	11
259	Soft X-ray magnetic scattering as a probe of recording media. Nuclear Instruments & Methods in Physics Research B, 2003, 200, 202-209.	1.4	11
260	Current induced domain wall states in CPP nanopillars with perpendicular anisotropy. Journal Physics D: Applied Physics, 2007, 40, 1253-1256.	2.8	11
261	Emergent Rotational Symmetries in Disordered Magnetic Domain Patterns. Physical Review Letters, 2011, 107, 257204.	7.8	11
262	Temperature dependence of the switching field in all-perpendicular spin-valve nanopillars. Physical Review B, 2013, 88, .	3.2	11
263	Low-angle X-ray diffraction of multilayered structures. Journal of Applied Crystallography, 1991, 24, 571-575.	4.5	10
264	Interlayer magnetic coupling in epitaxial Fe/Cr(211) and (100) superlattices. Scripta Metallurgica Et Materialia, 1995, 33, 1637-1642.	1.0	10
265	Large exchange-dominated domain wall velocities in antiferromagnetically coupled nanowires. AIP Advances, 2016, 6, .	1.3	10
266	Nonequilibrium sub–10 nm spin-wave soliton formation in FePt nanoparticles. Science Advances, 2022, 8, eabn0523.	10.3	10
267	Phenomenological Explanation of Elastic Anomalies in Superlattices. Materials Research Society Symposia Proceedings, 1993, 308, 685.	0.1	9
268	Design tradeoffs for beyond 20 Gb/in.2: Using a merged notched head on advanced low noise media (invited). Journal of Applied Physics, 2000, 87, 4996-5000.	2.5	9
269	Domain wall motion in nanopillar spin-valves with perpendicular anisotropy driven by spin-transfer torques. Physical Review B, 2012, 86, .	3.2	9
270	Condensation of collective charge ordering in chromium. Physical Review B, 2015, 91, .	3.2	9

#	Article	IF	CITATIONS
271	Scaling of domain cascades in stripe and skyrmion phases. Nature Communications, 2019, 10, 1988.	12.8	9
272	Anisotropic ultrafast spin dynamics in epitaxial cobalt. Applied Physics Letters, 2021, 118, .	3.3	9
273	Spontaneous fluctuations in a magnetic Fe/Gd skyrmion lattice. Physical Review Research, 2021, 3, .	3.6	9
274	Ion beam etching dependence of spin–orbit torque memory devices with switching current densities reduced by Hf interlayers. APL Materials, 2021, 9, .	5.1	9
275	Antiferromagnetic phase transitions in an ordered $Pt3Fe(111)$ film studied by neutron diffraction. Physical Review B, 2004, 70, .	3.2	8
276	Capped bit patterned media for high density magnetic recording. Journal of Applied Physics, 2009, 105, 07C121.	2.5	8
277	Current-induced magnetization reversal in terms of power dissipation. Physical Review B, 2011, 84, .	3.2	8
278	Write error rate slopes of in-plane magnetic tunnel junctions. IEEE Magnetics Letters, 2012, 3, .	1.1	8
279	Field mapping and temperature dependence of magnetic domain memory induced by exchange couplings. New Journal of Physics, 2013, 15, 023016.	2.9	8
280	Nonswitchable magnetic moments in polycrystalline and (111)-epitaxial permalloy/CoO exchange-biased bilayers. Physical Review B, 2014, 89, .	3.2	8
281	Determination of domain wall chirality using <i>in situ</i> Lorentz transmission electron microscopy. AIP Advances, 2017, 7, .	1.3	8
282	Electronic Metamaterials with Tunable Second-order Optical Nonlinearities. Scientific Reports, 2017, 7, 9983.	3.3	8
283	Energy-efficient generation of skyrmion phases in Co/Ni/Pt-based multilayers using Joule heating. Physical Review Materials, 2020, 4, .	2.4	8
284	Thermal activation and reversal time in antiferromagnetically coupled media. Applied Physics Letters, 2002, 81, 4631-4633.	3.3	7
285	Tunable resonant properties of perpendicular anisotropy [Co/Pd]/Fe/[Co/Pd] multilayers. Journal of Applied Physics, 2013, 113, 17C115.	2.5	7
286	Low-temperature magnetic characterization of optimum and etch-damaged in-plane magnetic tunnel junctions. Journal of Applied Physics, 2013, 114, .	2.5	7
287	Current-Induced Pinwheel Oscillations in Perpendicular Magnetic Anisotropy Spin Valve Nanopillars. IEEE Transactions on Magnetics, 2016, 52, 1-5.	2.1	7
288	Element-Specific Magnetization Dynamics in Co–Pt Alloys Induced by Strong Optical Excitation. Journal of Physical Chemistry C, 2021, 125, 11714-11721.	3.1	7

#	Article	IF	Citations
289	Periodic chiral magnetic domains in single-crystal nickel nanowires. Physical Review Materials, 2018, 2, .	2.4	7
290	Quantitative X-Ray Structure Determination of Superlattices and Interfaces. Materials Research Society Symposia Proceedings, 1991, 229, 41.	0.1	6
291	Effect of Structure on the Anomalous Mechanical Properties of Metallic Superlattices. Materials Research Society Symposia Proceedings, 1991, 239, 499.	0.1	6
292	Temperature dependent nucleation, propagation, and annihilation of domain walls in all-perpendicular spin-valve nanopillars. Journal of Applied Physics, 2014, 115, 113910.	2.5	6
293	Bimodal switching field distributions in all-perpendicular spin-valve nanopillars. Journal of Applied Physics, 2014, 115, 17C707.	2.5	6
294	Suppression of all-optical switching in He+ -irradiated Co/Pt multilayers: influence of the domain-wall energy. Journal Physics D: Applied Physics, 2018, 51, 215004.	2.8	6
295	Optimization of Nanopatterned Multilayer Hyperbolic Metamaterials for Spontaneous Light Emission Enhancement. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800263.	1.8	6
296	Bragg coherent diffractive imaging of ferromagnetic nickel nanoparticles. Journal of Applied Physics, 2018, 123, .	2.5	6
297	Current-induced generation of skyrmions in Pt/Co/Os/Pt thin films. Physical Review B, 2020, 102, .	3.2	6
298	Dynamic Symmetry Breaking in Chiral Magnetic Systems. Advanced Materials, 2021, 33, e2101524.	21.0	6
299	Disorder and superconductivity in YBa2Cu3O7â~Î/GdBa2Cu3O7-Î/superlattices. Physica C: Superconductivity and Its Applications, 1991, 185-189, 2069-2070.	1.2	5
300	CONNECTION BETWEEN GIANT MAGNETORESISTANCE AND ROUGHNESS IN SPUTTERED Fe/Cr SUPERLATTICES. International Journal of Modern Physics B, 1993, 07, 419-424.	2.0	5
301	The origin of signal-to-noise ratio improvements in laminated recording media. Applied Physics Letters, 2004, 85, 6200-6202.	3.3	5
302	Biquadratic coupling in antiferromagnetically coupled magnetic recording media. Journal of Applied Physics, 2004, 95, 6657-6659.	2.5	5
303	Magnetization profile in antiferromagnetically coupled recording media. Applied Physics Letters, 2005, 86, 162506.	3.3	5
304	Noise subtraction in antiferromagnetically coupled magnetic recording media. Applied Physics Letters, 2005, 86, 262501.	3.3	5
305	Origin of the magnetoâ€"thermogalvanic voltage in cluster-assembled metallic nanostructures. Nature Materials, 2008, 7, 257-257.	27.5	5
306	Microscopic return point memory in Co/Pd multilayer films. New Journal of Physics, 2010, 12, 035009.	2.9	5

#	Article	IF	Citations
307	Exchange bias mediated by interfacial nanoparticles (invited). Journal of Applied Physics, 2015, 117, 172607.	2.5	5
308	Phase coexistence and pinning of charge density waves by interfaces in chromium. Physical Review B, 2016, 94, .	3.2	5
309	Nanoscale Mapping of Heterogeneous Strain and Defects in Individual Magnetic Nanocrystals. Crystals, 2020, 10, 658.	2.2	5
310	Femtosecond control of phonon dynamics near a magnetic order critical point. Nature Communications, 2021, 12, 2865.	12.8	5
311	Magnetization studies of Ho/Y superlattices: Role of magnetoelastic coupling effects. Physical Review B, 1996, 54, 1100-1104.	3.2	4
312	Unusual Vortex Dynamics in Nb–a-Si Multilayers with Strong Interlayer Coupling. Physical Review Letters, 1996, 77, 5280-5283.	7.8	4
313	Investigation of Fe–Si–N films as magnetic overcoat for high density recording disk drives. Journal of Applied Physics, 2010, 108, 063925.	2.5	4
314	Asymmetric domain wall depinning under current in spin valves with perpendicular anisotropy. Applied Physics Letters, 2011, 98, 232512.	3.3	4
315	Synthesis of second-order nonlinearities in dielectric-semiconductor-dielectric metamaterials. Applied Physics Letters, 2017, 110, .	3.3	4
316	Pair distribution function analysis applied to decahedral gold nanoparticles. Physica Scripta, 2017, 92, 114002.	2.5	4
317	Micromagnetic simulation of THz signals in antiferromagnetic FeRh by sub-picosecond thermal pulses. AIP Advances, 2019, 9, 035040.	1.3	4
318	Direct time-domain determination of electron-phonon coupling strengths in chromium. Physical Review B, 2020, 102, .	3.2	4
319	Crystalline Orientation–Dependent Spin Hall Effect in Epitaxial Platinum. Frontiers in Physics, 2022, 9,	2.1	4
320	Structural and elastic property changes in superlattices induced by high energy ion irradiation. Materials Science & Department of the Armonic Processing, 1990, 126, 19-24.	5.6	3
321	Interface structure in high-Tcsuperlattices. Journal of Physics Condensed Matter, 1993, 5, A383-A384.	1.8	3
322	Neutron-induced collision cascade mixing in Nb/V superlattices. Nuclear Instruments & Methods in Physics Research B, 1994, 90, 344-348.	1.4	3
323	Signal decay and amplitude measurements of antiferromagnetically coupled magnetic recording media. Applied Physics Letters, 2002, 81, 2815-2817.	3.3	3
324	Understanding and optimizing laminated recording media (invited). Journal of Applied Physics, 2005, 97, 10N109.	2.5	3

#	Article	IF	Citations
325	Current Induced Switching of the Hard Layer in Perpendicular Magnetic Nanopillars. IEEE Transactions on Magnetics, 2010, 46, 2328-2330.	2.1	3
326	Transport and switching behaviors in magnetic tunnel junctions consisting of CoFeB/FeNiSiB hybrid free layers. Journal of Applied Physics, 2012, 111, 093913.	2.5	3
327	Current-driven transverse domain wall oscillations in perpendicular spin-valve structures. Physical Review B, 2020, 102, .	3.2	3
328	Optical transient grating pumped X-ray diffraction microscopy for studying mesoscale structural dynamics. Scientific Reports, 2021, 11, 19322.	3.3	3
329	Structure and Magnetism of Epitaxial Rare-Earth-Transition-Metal Films. , 1997, , 467-478.		3
330	X-ray nanodiffraction imaging reveals distinct nanoscopic dynamics of an ultrafast phase transition. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118597119.	7.1	3
331	Magnetic properties of Fe/Cr and Fe/Cu superlattices (abstract). Journal of Applied Physics, 1991, 69, 4801-4801.	2.5	2
332	Spin-density-wave antiferromagnetism of Cr in Fe/Cr(0 0 1) superlattices. Physica B: Condensed Matter, 1997, 237-238, 234-238.	2.7	2
333	Symmetry influence on interlayer coupling in epitaxial Co/Cr trilayers grown on MgO (100) and (110) substrates. Journal of Magnetism and Magnetic Materials, 1999, 198-199, 387-390.	2.3	2
334	Momentum transfer resolved memory in a magnetic system with perpendicular anisotropy. Applied Physics Letters, 2011, 98, 122505.	3.3	2
335	Large spin-to-charge conversion in ultrathin gold-silicon multilayers. Physical Review Materials, 2021, 5, .	2.4	2
336	Chiral spin textures in Fe/Gd based multilayer thin films. Microscopy and Microanalysis, 2021, 27, 2404-2407.	0.4	2
337	Large anisotropic magnetocaloric effect in all-sputtered epitaxial terbium thin films. Physical Review Materials, 2020, 4, .	2.4	2
338	Magnetic and Structural Properties of Fe/Pd Multilayers Studied by Magnetic X-Ray Dichroism and X-Ray Absorption Spectroscopy. Materials Research Society Symposia Proceedings, 1994, 375, 87.	0.1	1
339	Magnetic Phase Transitions in Epitaxial Fe/Cr Superlattices. Materials Research Society Symposia Proceedings, 1995, 384, 145.	0.1	1
340	Epitaxial hard-soft magnetic heterostructures as model exchange-spring magnets. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2000, 80, 247-256.	0.6	1
341	Domain wall motion in magnetically frustrated nanorings. Physical Review B, 2012, 85, .	3.2	1
342	Ultrafast Lattice Dynamics of Granular L1o Phase FePt Measured by MeV Electron Diffraction. Microscopy and Microanalysis, 2015, 21, 655-656.	0.4	1

#	Article	IF	Citations
343	Torque magnetometry of perpendicular anisotropy exchange-spring heterostructures. Journal of Applied Physics, 2016, 120, 013903.	2.5	1
344	Thermal stability and magnetization switching of composite free layer with perpendicular magnetic anisotropy. AIP Advances, 2021, 11 , .	1.3	1
345	Skyrmion Stabilization at the Domain Morphology Transition in Ferromagnet/Heavy Metal Heterostructures with Low Exchange Stiffness. Advanced Materials Interfaces, 0, , 2101708.	3.7	1
346	Discretized evolution of solitons in the achiral stripe phase of a Fe/Gd thin film. Physical Review B, 2022, 105 , .	3.2	1
347	Magnetic excitations in antiferromagnetically coupled superlattices: Fe/Mo and Fe/Cr. Journal of Physics Condensed Matter, 1993, 5, A369-A372.	1.8	O
348	Interfacial Structure of Lattice Mismatched $bcc(110)/bcc(110)$ Transition Metal Superlattices. Materials Research Society Symposia Proceedings, 1993, 307, 131.	0.1	0
349	Modulation Wavelength Dependence of Ion Mdong in Metallic Superlattices. Materials Research Society Symposia Proceedings, 1993, 316, 271.	0.1	O
350	Stokes anti-Stokes peak intensity interchange across a first-order phase transition. Surface Science, 2002, 507-510, 502-506.	1.9	0
351	Switching probability in all-perpendicular spin valves. , 2010, , .		O
352	Nanopatterned Multilayer Hyperbolic Metamaterials for Enhancing Spontaneous Light Emission. , 2014, , .		0
353	Light emission enhancement by using patterned multilayer hyperbolic metamaterials. , 2015, , .		O
354	All-optical control of ferromagnetic thin films and nanostructures: Competition between polarized light and applied magnetic field. , 2015, , .		0
355	Fabrication and characterization of InGaAsP/Ag luminescent hyperbolic metamaterials. , 2016, , .		O
356	Demonstration of a Highly Tunable Hybrid nMOS-Magnetic-Tunnel-Junction Ring Oscillator. IEEE Transactions on Electron Devices, 2016, 63, 1768-1773.	3.0	0
357	Resonant x-ray magnetic scattering study of domain morphology in FeGd thin film. AIP Conference Proceedings, 2018, , .	0.4	O
358	Spin transfer torque magnetization reversal in a hard/soft composite structures. AIP Advances, 2018, 8, 015024.	1.3	0
359	Photo- and Thermal-Induced Antiferromagnetic Interlayer Coupling in Fe/(Fe-Si) Superlattices. , 1994, , 157-165.		0
360	Generation of Bright Soft X-ray Harmonics with Circular Polarization for X-ray Magnetic Circular Dichroism. , 2016, , .		0

#	Article	IF	CITATIONS
361	Bright Soft X-ray High Harmonic Generation with Circular Polarization for X-ray Magnetic Circular Dichroism., 2016,,.		0
362	Controlling the Metamagnetic Phase Transition in FeRh/MnRh Superlattices and Thin-Film Fe50-xMnxRh50 Alloys. ACS Applied Materials & Interfaces, 2022, 14, 3568-3579.	8.0	0
363	Micro-structuration effects on local magneto-transport in [Co/Pd]IrMn thin films. AIP Advances, 2022, 12, 035327.	1.3	0
364	Phonon-assisted formation of an itinerant electronic density wave. Communications Physics, 2022, 5, .	5.3	0