Stella Maria Cascioferro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4657678/publications.pdf

Version: 2024-02-01

49 papers

2,086 citations

249298 26 h-index 263392 45 g-index

49 all docs 49 docs citations

times ranked

49

2819 citing authors

#	Article	IF	CITATIONS
1	Metabolomics-assisted discovery of a new anticancer GLS-1 inhibitor chemotype from a nortopsentin-inspired library: From phenotype screening to target identification. European Journal of Medicinal Chemistry, 2022, 234, 114233.	2.6	28
2	A New Oxadiazole-Based Topsentin Derivative Modulates Cyclin-Dependent Kinase 1 Expression and Exerts Cytotoxic Effects on Pancreatic Cancer Cells. Molecules, 2022, 27, 19.	1.7	26
3	Therapeutic Strategies To Counteract Antibiotic Resistance in MRSA Biofilmâ€Associated Infections. ChemMedChem, 2021, 16, 65-80.	1.6	92
4	1,2,4â€Oxadiazole Topsentin Analogs with Antiproliferative Activity against Pancreatic Cancer Cells, Targeting GSK3β Kinase. ChemMedChem, 2021, 16, 537-554.	1.6	33
5	Dynamicâ€shared Pharmacophore Approach as Tool to Design New Allosteric PRC2 Inhibitors, Targeting EED Binding Pocket. Molecular Informatics, 2021, 40, 2000148.	1.4	1
6	Novel strategies in the war against antibiotic resistance. Future Medicinal Chemistry, 2021, 13, 529-531.	1.1	22
7	CHK1 inhibitor sensitizes resistant colorectal cancer stem cells to nortopsentin. IScience, 2021, 24, 102664.	1.9	31
8	Nobiletin and Xanthohumol Sensitize Colorectal Cancer Stem Cells to Standard Chemotherapy. Cancers, 2021, 13, 3927.	1.7	20
9	1,2,4-Oxadiazole topsentin analogs as staphylococcal biofilm inhibitors targeting the bacterial transpeptidase sortase A. European Journal of Medicinal Chemistry, 2021, 209, 112892.	2.6	44
10	Thiazole Analogues of the Marine Alkaloid Nortopsentin as Inhibitors of Bacterial Biofilm Formation. Molecules, 2021, 26, 81.	1.7	33
11	"Open Sesame?†Biomarker Status of the Human Equilibrative Nucleoside Transporter-1 and Molecular Mechanisms Influencing its Expression and Activity in the Uptake and Cytotoxicity of Gemcitabine in Pancreatic Cancer. Cancers, 2020, 12, 3206.	1.7	21
12	Bioactive Polyphenols from Pomegranate Juice Reduce 5-Fluorouracil-Induced Intestinal Mucositis in Intestinal Epithelial Cells. Antioxidants, 2020, 9, 699.	2.2	17
13	Citrus sinensis and Vitis vinifera Protect Cardiomyocytes from Doxorubicin-Induced Oxidative Stress: Evaluation of Onconutraceutical Potential of Vegetable Smoothies. Antioxidants, 2020, 9, 378.	2.2	8
14	Thiazoles, Their Benzofused Systems, and Thiazolidinone Derivatives: Versatile and Promising Tools to Combat Antibiotic Resistance. Journal of Medicinal Chemistry, 2020, 63, 7923-7956.	2.9	106
15	Inhibitors of antibiotic resistance mechanisms: clinical applications and future perspectives. Future Medicinal Chemistry, 2020, 12, 357-359.	1.1	21
16	3-(6-Phenylimidazo [2,1-b][1,3,4]thiadiazol-2-yl)-1H-Indole Derivatives as New Anticancer Agents in the Treatment of Pancreatic Ductal Adenocarcinoma. Molecules, 2020, 25, 329.	1.7	39
17	lmidazo $[2,1$ -b] $[1,3,4]$ thiadiazoles with antiproliferative activity against primary and gemcitabine-resistant pancreatic cancer cells. European Journal of Medicinal Chemistry, 2020, 189, 112088.	2.6	49
18	Biological Evaluation of the Antiproliferative and Anti-migratory Activity of a Series of 3-(6-Phenylimidazo[2,1- <i>b</i>][1,3,4]thiadiazol-2-yl)-1 <i>H</i> -indole Derivatives Against Pancreatic Cancer Cells. Anticancer Research, 2019, 39, 3615-3620.	0.5	22

#	Article	IF	Citations
19	Pharmacogenetics of treatments for pancreatic cancer. Expert Opinion on Drug Metabolism and Toxicology, 2019, 15, 437-447.	1.5	20
20	A Synthetic Derivative of Antimicrobial Peptide Holothuroidin 2 from Mediterranean Sea Cucumber (Holothuria tubulosa) in the Control of Listeria monocytogenes. Marine Drugs, 2019, 17, 159.	2.2	25
21	2,6-Disubstituted imidazo[2,1-b][1,3,4]thiadiazole derivatives as potent staphylococcal biofilm inhibitors. European Journal of Medicinal Chemistry, 2019, 167, 200-210.	2.6	52
22	New 1,2,4-Oxadiazole Nortopsentin Derivatives with Cytotoxic Activity. Marine Drugs, 2019, 17, 35.	2.2	51
23	Synthesis and photocytotoxic activity of $[1,2,3]$ triazolo $[4,5-h][1,6]$ naphthyridines and $[1,3]$ oxazolo $[5,4-h][1,6]$ naphthyridines. European Journal of Medicinal Chemistry, 2019, 162, 176-193.	2.6	12
24	Synthetic small molecules as anti-biofilm agents in the struggle against antibiotic resistance. European Journal of Medicinal Chemistry, 2019, 161, 154-178.	2.6	125
25	An overview of recent molecular dynamics applications as medicinal chemistry tools for the undruggable site challenge. MedChemComm, 2018, 9, 920-936.	3.5	34
26	Bacterial Biofilm Inhibition in the Development of Effective Anti-Virulence Strategy. Open Medicinal Chemistry Journal, 2018, 12, 84-87.	0.9	27
27	Synthesis of 5H-pyrido[3,2-b]pyrrolizin-5-one tripentone analogs with antitumor activity. European Journal of Medicinal Chemistry, 2018, 158, 236-246.	2.6	7
28	New Thiazole Nortopsentin Analogues Inhibit Bacterial Biofilm Formation. Marine Drugs, 2018, 16, 274.	2.2	38
29	Pyrrolo[3′,2′:6,7]cyclohepta[1,2-b]pyridines with potent photo-antiproliferative activity. European Journal of Medicinal Chemistry, 2017, 128, 300-318.	2.6	12
30	Pharmaceutical Approaches to Target Antibiotic Resistance Mechanisms. Journal of Medicinal Chemistry, 2017, 60, 8268-8297.	2.9	123
31	1,3,5-Triazines: A promising scaffold for anticancer drugs development. European Journal of Medicinal Chemistry, 2017, 142, 523-549.	2.6	105
32	Synthesis, antitumor activity and CDK1 inhibiton of new thiazole nortopsentin analogues. European Journal of Medicinal Chemistry, 2017, 138, 371-383.	2.6	64
33	New Tripentone Analogs with Antiproliferative Activity. Molecules, 2017, 22, 2005.	1.7	8
34	Discovery of a New Class of Sortase A Transpeptidase Inhibitors to Tackle Gram-Positive Pathogens: 2-(2-Phenylhydrazinylidene)alkanoic Acids and Related Derivatives. Molecules, 2016, 21, 241.	1.7	28
35	Synthesis and Antitumor Activity of New Thiazole Nortopsentin Analogs. Marine Drugs, 2016, 14, 226.	2.2	52
36	Synthesis and biofilm formation reduction of pyrazole-4-carboxamide derivatives in some Staphylococcus aureus strains. European Journal of Medicinal Chemistry, 2016, 123, 58-68.	2.6	24

#	Article	IF	CITATIONS
37	A peptide from human \hat{l}^2 thymosin as a platform for the development of new anti-biofilm agents for Staphylococcus spp. and Pseudomonas aeruginosa. World Journal of Microbiology and Biotechnology, 2016, 32, 124.	1.7	14
38	A new class of phenylhydrazinylidene derivatives as inhibitors of Staphylococcus aureus biofilm formation. Medicinal Chemistry Research, 2016, 25, 870-878.	1.1	18
39	Pharmaceutical Potential of Synthetic and Natural Pyrrolomycins. Molecules, 2015, 20, 21658-21671.	1.7	33
40	Recent advanced in bioactive systems containing pyrazole fused with a five membered heterocycle. European Journal of Medicinal Chemistry, 2015, 97, 732-746.	2.6	111
41	Synthesis and antiproliferative activity of 3-(2-chloroethyl)-5,6-dihydropyrazolo[3,4-f][1,2,3,5]tetrazepin-4-(3H)-one. European Journal of Medicinal Chemistry, 2015, 96, 98-104.	2.6	23
42	Sortase A Inhibitors: Recent Advances and Future Perspectives. Journal of Medicinal Chemistry, 2015, 58, 9108-9123.	2.9	107
43	Antiadhesion agents against Gram-positive pathogens. Future Microbiology, 2014, 9, 1209-1220.	1.0	62
44	Sortase A: An ideal target for anti-virulence drug development. Microbial Pathogenesis, 2014, 77, 105-112.	1.3	145
45	The Future of Antibiotic: From the Magic Bullet to the Smart Bullet. Journal of Microbial & Biochemical Technology, 2014, 06, .	0.2	11
46	Synthesis and anti-staphylococcal activity of new 4-diazopyrazole derivatives. European Journal of Medicinal Chemistry, 2012, 58, 64-71.	2.6	21
47	Pyrrolomycins as potential anti-staphylococcal biofilms agents. Biofouling, 2010, 26, 433-438.	0.8	35
48	4-Diazopyrazole Derivatives as Potential New Antibiofilm Agents. Chemotherapy, 2008, 54, 456-462.	0.8	13
49	Synthesis and antimicrobial activity of new bromine-rich pyrrole derivatives related to monodeoxypyoluteorin. European Journal of Medicinal Chemistry, 2006, 41, 1439-1445.	2.6	73