List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4657673/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Use of PASEF for Accelerated Protein Sequence Confirmation and De Novo Sequencing with High Data Quality. Methods in Molecular Biology, 2022, 2313, 207-217.	0.4	4
2	Bispecific antibody characterization by a combination of intact and site-specific/chain-specific LC/MS techniques. Talanta, 2022, 236, 122836.	2.9	15
3	Optimized Sample Preparation and Data Processing of Data-Independent Acquisition Methods for the Robust Quantification of Trace-Level Host Cell Protein Impurities in Antibody Drug Products. Journal of Proteome Research, 2021, 20, 923-931.	1.8	17
4	Use of Ultra-short Columns for Therapeutic Protein Separations, Part 2: Designing the Optimal Column Dimension for Reversed-Phase Liquid Chromatography. Analytical Chemistry, 2021, 93, 1285-1293.	3.2	13
5	Use of Ultrashort Columns for Therapeutic Protein Separations. Part 1: Theoretical Considerations and Proof of Concept. Analytical Chemistry, 2021, 93, 1277-1284.	3.2	26
6	Therapeutic Fcâ€fusion proteins: Current analytical strategies. Journal of Separation Science, 2021, 44, 35-62.	1.3	78
7	Analysis of Monoclonal Antibody Glycopeptides by Capillary Electrophoresis–Mass Spectrometry Coupling (CE-MS). Methods in Molecular Biology, 2021, 2271, 97-106.	0.4	4
8	Fast Afucosylation Profiling of Glycoengineered Antibody Subunits by Middle-Up Mass Spectrometry. Methods in Molecular Biology, 2021, 2271, 73-83.	0.4	2
9	New wide-pore superficially porous stationary phases with low hydrophobicity applied for the analysis of monoclonal antibodies. Journal of Chromatography A, 2021, 1642, 462050.	1.8	8
10	Alternative mobile phase additives for the characterization of protein biopharmaceuticals in liquid chromatography – Mass spectrometry. Analytica Chimica Acta, 2021, 1156, 338347.	2.6	14
11	State-of-the-Art Native Mass Spectrometry and Ion Mobility Methods to Monitor Homogeneous Site-Specific Antibody-Drug Conjugates Synthesis. Pharmaceuticals, 2021, 14, 498.	1.7	16
12	High-Resolution IMS–MS to Assign Additional Disulfide Bridge Pairing in Complementarity-Determining Regions of an IgG4 Monoclonal Antibody. Journal of the American Society for Mass Spectrometry, 2021, 32, 2505-2512.	1.2	13
13	Towards a simple on-line coupling of ion exchange chromatography and native mass spectrometry for the detailed characterization of monoclonal antibodies. Journal of Chromatography A, 2021, 1655, 462499.	1.8	28
14	Ultra-short ion-exchange columns for fast charge variants analysis of therapeutic proteins. Journal of Chromatography A, 2021, 1657, 462568.	1.8	13
15	Quantitative N-Glycan Profiling of Therapeutic Monoclonal Antibodies Performed by Middle-Up Level HILIC-HRMS Analysis. Pharmaceutics, 2021, 13, 1744.	2.0	12
16	NIST Interlaboratory Study on Glycosylation Analysis of Monoclonal Antibodies: Comparison of Results from Diverse Analytical Methods. Molecular and Cellular Proteomics, 2020, 19, 11-30.	2.5	87
17	Efficacy of the Antibody–Drug Conjugate W0101 in Preclinical Models of IGF-1 Receptor Overexpressing Solid Tumors. Molecular Cancer Therapeutics, 2020, 19, 168-177.	1.9	19
18	Interlaboratory Study for Characterizing Monoclonal Antibodies by Top-Down and Middle-Down Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2020, 31, 1783-1802.	1.2	67

#	Article	IF	CITATIONS
19	Toward Automation of Collision-Induced Unfolding Experiments through Online Size Exclusion Chromatography Coupled to Native Mass Spectrometry. Analytical Chemistry, 2020, 92, 12900-12908.	3.2	18
20	Antibody–Drug Conjugates: The Last Decade. Pharmaceuticals, 2020, 13, 245.	1.7	207
21	Middle Level IM–MS and CIU Experiments for Improved Therapeutic Immunoglobulin Subclass Fingerprinting. Analytical Chemistry, 2020, 92, 8827-8835.	3.2	14
22	Glycan-Mediated Technology for Obtaining Homogeneous Site-Specific Conjugated Antibody–Drug Conjugates: Synthesis and Analytical Characterization by Using Complementary Middle-up LC/HRMS Analysis. Analytical Chemistry, 2020, 92, 8170-8177.	3.2	17
23	Impact of the column on effluent pH in cation exchange pH gradient chromatography, a practical study. Journal of Chromatography A, 2020, 1626, 461350.	1.8	11
24	Coupling non-denaturing chromatography to mass spectrometry for the characterization of monoclonal antibodies and related products. Journal of Pharmaceutical and Biomedical Analysis, 2020, 185, 113207.	1.4	38
25	Determination of size variants by CE-SDS for approved therapeutic antibodies: Key implications of subclasses and light chain specificities. Journal of Pharmaceutical and Biomedical Analysis, 2020, 184, 113166.	1.4	30
26	Combination of intact, middle-up and bottom-up levels to characterize 7 therapeutic monoclonal antibodies by capillary electrophoresis – Mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2020, 182, 113107.	1.4	39
27	Drug Loading and Distribution of ADCs After Reduction or IdeS Digestion and Reduction. Methods in Molecular Biology, 2020, 2078, 187-195.	0.4	2
28	Analysis of ADCs by Native Mass Spectrometry. Methods in Molecular Biology, 2020, 2078, 197-211.	0.4	2
29	Characterization of the Primary Structure of Cysteine-Linked Antibody-Drug Conjugates Using Capillary Electrophoresis with Mass Spectrometry. Methods in Molecular Biology, 2020, 2078, 263-272.	0.4	3
30	A Case Study to Identify the Drug Conjugation Site of a Site-Specific Antibody-Drug-Conjugate Using Middle-Down Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2019, 30, 2419-2429.	1.2	23
31	Glycosylation of biosimilars: Recent advances in analytical characterization and clinical implications. Analytica Chimica Acta, 2019, 1089, 1-18.	2.6	62
32	Proof of Concept To Achieve Infinite Selectivity for the Chromatographic Separation of Therapeutic Proteins. Analytical Chemistry, 2019, 91, 12954-12961.	3.2	30
33	Cutting-edge multi-level analytical and structural characterization of antibody-drug conjugates: present and future. Expert Review of Proteomics, 2019, 16, 337-362.	1.3	47
34	Tuning selectivity in cation-exchange chromatography applied for monoclonal antibody separations, part 2: Evaluation of recent stationary phases. Journal of Pharmaceutical and Biomedical Analysis, 2019, 172, 320-328.	1.4	17
35	Insights from capillary electrophoresis approaches for characterization of monoclonal antibodies and antibody drug conjugates in the period 2016–2018. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2019, 1122-1123, 1-17.	1.2	50
36	Tuning selectivity in cation-exchange chromatography applied for monoclonal antibody separations, part 1: Alternative mobile phases and fine tuning of the separation. Journal of Pharmaceutical and Biomedical Analysis, 2019, 168, 138-147.	1.4	28

#	Article	IF	CITATIONS
37	Macro- and Micro-Heterogeneity of Natural and Recombinant IgG Antibodies. Antibodies, 2019, 8, 18.	1.2	71
38	Structural Analysis of Monoclonal Antibodies by Ultrahigh Resolution MALDI In-Source Decay FT-ICR Mass Spectrometry. Analytical Chemistry, 2019, 91, 2079-2085.	3.2	48
39	Intact monoclonal antibodies separation and analysis by sheathless capillary electrophoresis-mass spectrometry. European Journal of Mass Spectrometry, 2019, 25, 324-332.	0.5	20
40	Structure, heterogeneity and developability assessment of therapeutic antibodies. MAbs, 2019, 11, 239-264.	2.6	186
41	Orthogonal Middle-up Approaches for Characterization of the Glycan Heterogeneity of Etanercept by Hydrophilic Interaction Chromatography Coupled to High-Resolution Mass Spectrometry. Analytical Chemistry, 2019, 91, 873-880.	3.2	29
42	Characterization of an antibody-drug conjugate by hydrophilic interaction chromatography coupled to mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1080, 37-41.	1.2	39
43	Analytical comparability study of recombinant monoclonal antibody therapeutics. MAbs, 2018, 10, 513-538.	2.6	63
44	Development of Comprehensive Online Two-Dimensional Liquid Chromatography/Mass Spectrometry Using Hydrophilic Interaction and Reversed-Phase Separations for Rapid and Deep Profiling of Therapeutic Antibodies. Analytical Chemistry, 2018, 90, 5923-5929.	3.2	78
45	Hyphenation of size exclusion chromatography to native ion mobility mass spectrometry for the analytical characterization of therapeutic antibodies and related products. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1086, 176-183.	1.2	69
46	An Online Four-Dimensional HIC×SEC-IM×MS Methodology for Proof-of-Concept Characterization of Antibody Drug Conjugates. Analytical Chemistry, 2018, 90, 1578-1586.	3.2	75
47	Utility of a high coverage phenyl-bonding and wide-pore superficially porous particle for the analysis of monoclonal antibodies and related products. Journal of Chromatography A, 2018, 1549, 63-76.	1.8	36
48	Current possibilities of liquid chromatography for the characterization of antibody-drug conjugates. Journal of Pharmaceutical and Biomedical Analysis, 2018, 147, 493-505.	1.4	54
49	Monoclonal antibody N-glycosylation profiling using capillary electrophoresis – Mass spectrometry: Assessment and method validation. Talanta, 2018, 178, 530-537.	2.9	50
50	Multiplexed Middle-Down Mass Spectrometry as a Method for Revealing Light and Heavy Chain Connectivity in a Monoclonal Antibody. Analytical Chemistry, 2018, 90, 12527-12535.	3.2	38
51	A Novel Online Four-Dimensional SEC×SEC-IM×MS Methodology for Characterization of Monoclonal Antibody Size Variants. Analytical Chemistry, 2018, 90, 13929-13937.	3.2	49
52	Highâ€resolution separation of monoclonal antibodies mixtures and their charge variants by an alternative and generic CZE method. Electrophoresis, 2018, 39, 2083-2090.	1.3	24
53	Native Mass Spectrometry, Ion Mobility, and Collision-Induced Unfolding for Conformational Characterization of IgG4 Monoclonal Antibodies. Analytical Chemistry, 2018, 90, 8865-8872.	3.2	51
54	Unraveling the mysteries of modern size exclusion chromatography - the way to achieve confident characterization of therapeutic proteins. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1092, 368-378.	1.2	48

#	Article	IF	CITATIONS
55	Characterizing various monoclonal antibodies with milder reversed phase chromatography conditions. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1096, 1-10.	1.2	25
56	Protocols for the analytical characterization of therapeutic monoclonal antibodies. III – Denaturing chromatographic techniques hyphenated to mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1096, 95-106.	1.2	28
57	Biopharmaceutical Applications of Capillary Electromigration Methods. , 2018, , 453-480.		6
58	Hydrophilic Interaction Chromatography Hyphenated with Mass Spectrometry: A Powerful Analytical Tool for the Comparison of Originator and Biosimilar Therapeutic Monoclonal Antibodies at the Middle-up Level of Analysis. Analytical Chemistry, 2017, 89, 2086-2092.	3.2	77
59	Top-down analysis of immunoglobulin G isotypes 1 and 2 with electron transfer dissociation on a high-field Orbitrap mass spectrometer. Journal of Proteomics, 2017, 159, 67-76.	1.2	47
60	Development of a fast workflow to screen the charge variants of therapeutic antibodies. Journal of Chromatography A, 2017, 1498, 147-154.	1.8	31
61	Top-down and middle-down approach by fraction collection enrichment using off-line capillary electrophoresis – mass spectrometry coupling: Application to monoclonal antibody F c/2 charge variants. Journal of Chromatography A, 2017, 1498, 120-127.	1.8	31
62	Insights from native mass spectrometry approaches for top- and middle- level characterization of site-specific antibody-drug conjugates. MAbs, 2017, 9, 801-811.	2.6	55
63	Protocols for the analytical characterization of therapeutic monoclonal antibodies. I – Non-denaturing chromatographic techniques. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1058, 73-84.	1.2	42
64	Analysis of recombinant monoclonal antibodies in hydrophilic interaction chromatography: A generic method development approach. Journal of Pharmaceutical and Biomedical Analysis, 2017, 145, 24-32.	1.4	32
65	Protocols for the analytical characterization of therapeutic monoclonal antibodies. II – Enzymatic and chemical sample preparation. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1060, 325-335.	1.2	59
66	Orthogonal liquid chromatography–mass spectrometry methods for the comprehensive characterization of therapeutic glycoproteins, from released glycans to intact protein level. Journal of Chromatography A, 2017, 1498, 128-146.	1.8	70
67	Strategies and challenges for the next generation of antibody–drug conjugates. Nature Reviews Drug Discovery, 2017, 16, 315-337.	21.5	1,527
68	Determination of isoelectric points and relative charge variants of 23 therapeutic monoclonal antibodies. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1065-1066, 119-128.	1.2	135
69	Forced degradation of recombinant monoclonal antibodies: A practical guide. MAbs, 2017, 9, 1217-1230.	2.6	163
70	Characterization of 30 therapeutic antibodies and related products by size exclusion chromatography: Feasibility assessment for future mass spectrometry hyphenation. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1065-1066, 35-43.	1.2	73
71	Epitope characterization of anti-JAM-A antibodies using orthogonal mass spectrometry and surface plasmon resonance approaches. MAbs, 2017, 9, 1317-1326.	2.6	11
72	Comprehensive study on the effects of sodium and potassium additives in size exclusion chromatographic separations of protein biopharmaceuticals. Journal of Pharmaceutical and Biomedical Analysis, 2017, 144, 242-251.	1.4	25

#	Article	IF	CITATIONS
73	Evaluation of size exclusion chromatography columns packed with sub-3 μm particles for the analysis of biopharmaceutical proteins. Journal of Chromatography A, 2017, 1498, 80-89.	1.8	64
74	Analysis of antibody-drug conjugates by comprehensive on-line two-dimensional hydrophobic interaction chromatography x reversed phase liquid chromatography hyphenated to high resolution mass spectrometry. I â" Optimization of separation conditions. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1032, 103-111.	1.2	51
75	Comparison of originator and biosimilar therapeutic monoclonal antibodies using comprehensive two-dimensional liquid chromatography coupled with time-of-flight mass spectrometry. MAbs, 2016, 8, 1224-1234.	2.6	76
76	A novel antagonist antiâ€cMet antibody with antitumor activities targeting both ligandâ€dependent and ligandâ€independent câ€Met receptors. International Journal of Cancer, 2016, 139, 1851-1863.	2.3	18
77	Cutting-edge capillary electrophoresis characterization of monoclonal antibodies and related products. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1032, 61-78.	1.2	76
78	Characterization of therapeutic antibodies and related products by two-dimensional liquid chromatography coupled with UV absorbance and mass spectrometric detection. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1032, 51-60.	1.2	69
79	Potential of hydrophilic interaction chromatography for the analytical characterization of protein biopharmaceuticals. Journal of Chromatography A, 2016, 1448, 81-92.	1.8	80
80	Insights from native mass spectrometry and ion mobility-mass spectrometry for antibody and antibody-based product characterization. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1032, 79-90.	1.2	48
81	Hydrophobic interaction chromatography for the characterization of monoclonal antibodies and related products. Journal of Pharmaceutical and Biomedical Analysis, 2016, 130, 3-18.	1.4	104
82	Rapid and improved characterization of therapeutic antibodies and antibody related products using IdeS digestion and subunit analysis. Analyst, The, 2016, 141, 3114-3125.	1.7	85
83	Impact of organic modifier and temperature on protein denaturation in hydrophobic interaction chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2016, 131, 124-132.	1.4	28
84	Analysis of antibody-drug conjugates by comprehensive on-line two-dimensional hydrophobic interaction chromatography x reversed phase liquid chromatography hyphenated to high resolution mass spectrometry. II- Identification of sub-units for the characterization of even and odd load drug species. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences,	1.2	30
85	A new anti-human Fc method to capture and analyze ADCs for characterization of drug distribution and the drug-to-antibody ratio in serum from pre-clinical species. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1032, 149-154.	1.2	13
86	Advanced assessment of the physicochemical characteristics of Remicade® and Inflectra® by sensitive LC/MS techniques. MAbs, 2016, 8, 1021-1034.	2.6	36
87	A New Anti-CXCR4 Antibody That Blocks the CXCR4/SDF-1 Axis and Mobilizes Effector Cells. Molecular Cancer Therapeutics, 2016, 15, 1890-1899.	1.9	28
88	Independent highly sensitive characterization of asparagine deamidation and aspartic acid isomerization by sheathless CZEâ€ESIâ€MS/MS. Journal of Mass Spectrometry, 2016, 51, 150-158.	0.7	31
89	Practical method development for the separation of monoclonal antibodies and antibody-drug-conjugate species in hydrophobic interaction chromatoraphy, part 2: Optimization of the phase system. Journal of Pharmaceutical and Biomedical Analysis, 2016, 121, 161-173.	1.4	46
90	Full validation of therapeutic antibody sequences by middle-up mass measurements and middle-down protein sequencing. MAbs, 2016, 8, 318-330.	2.6	55

#	Article	IF	CITATIONS
91	Structural characterization of antibody drug conjugate by a combination of intact, middle-up and bottom-up techniques using sheathless capillary electrophoresis – Tandem mass spectrometry as nanoESI infusion platform and separation method. Analytica Chimica Acta, 2016, 918, 50-59.	2.6	70
92	Characterization of cetuximab Fc/2 dimers by off-line CZE-MS. Analytica Chimica Acta, 2016, 908, 168-176.	2.6	44
93	A sensitive multidimensional method for the detection, characterization, and quantification of trace free drug species in antibody-drug conjugate samples using mass spectral detection. MAbs, 2016, 8, 306-317.	2.6	38
94	Cutting-edge mass spectrometry methods for the multi-level structural characterization of antibody-drug conjugates. Expert Review of Proteomics, 2016, 13, 157-183.	1.3	91
95	On-Chip Mesoporous Functionalized Magnetic Microspheres for Protein Sequencing by Extended Bottom-up Mass Spectrometry. Analytical Chemistry, 2016, 88, 1775-1784.	3.2	15
96	Practical method development for the separation of monoclonal antibodies and antibody-drug-conjugate species in hydrophobic interaction chromatography, part 1: optimization of the mobile phase. Journal of Pharmaceutical and Biomedical Analysis, 2016, 118, 393-403.	1.4	61
97	Glycoform Separation and Characterization of Cetuximab Variants by Middle-up Off-Line Capillary Zone Electrophoresis-UV/Electrospray Ionization-MS. Analytical Chemistry, 2015, 87, 6240-6250.	3.2	72
98	Intact Antibody Characterization Using Orbitrap Mass Spectrometry. ACS Symposium Series, 2015, , 289-315.	0.5	2
99	Characterization of antibody drug conjugate positional isomers at cysteine residues by peptide mapping LC–MS analysis. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 981-982, 9-13.	1.2	56
100	Cuttingâ€edge mass spectrometry characterization of originator, biosimilar and biobetter antibodies. Journal of Mass Spectrometry, 2015, 50, 285-297.	0.7	109
101	Systematic evaluation of mobile phase additives for the LC–MS characterization of therapeutic proteins. Talanta, 2015, 136, 60-67.	2.9	34
102	Native mass spectrometry and ion mobility characterization of trastuzumab emtansine, a lysineâ€linked antibody drug conjugate. Protein Science, 2015, 24, 1210-1223.	3.1	113
103	Direct Identification of Rituximab Main Isoforms and Subunit Analysis by Online Selective Comprehensive Two-Dimensional Liquid Chromatography–Mass Spectrometry. Analytical Chemistry, 2015, 87, 8307-8315.	3.2	90
104	Absolute and multiplex quantification of antibodies in serum using PSAQâ,,¢ standards and LC-MS/MS. Bioanalysis, 2015, 7, 1237-1251.	0.6	18
105	Characterization of cation exchanger stationary phases applied for the separations of therapeutic monoclonal antibodies. Journal of Pharmaceutical and Biomedical Analysis, 2015, 111, 169-176.	1.4	34
106	Characterization of the N-Terminal Heterogeneities of Monoclonal Antibodies Using In-Gel Charge Derivatization of α-Amines and LC-MS/MS. Analytical Chemistry, 2015, 87, 3784-3790.	3.2	28
107	Ion-exchange chromatography for the characterization of biopharmaceuticals. Journal of Pharmaceutical and Biomedical Analysis, 2015, 113, 43-55.	1.4	186
108	Adsorption and recovery issues of recombinant monoclonal antibodies in reversed-phase liquid chromatographyâ€. Journal of Separation Science, 2015, 38, 1-8.	1.3	42

#	Article	IF	CITATIONS
109	Method development for the separation of monoclonal antibody charge variants in cation exchange chromatography, Part I: Salt gradient approach. Journal of Pharmaceutical and Biomedical Analysis, 2015, 102, 33-44.	1.4	133
110	Method development for the separation of monoclonal antibody charge variants in cation exchange chromatography, Part II: pH gradient approach. Journal of Pharmaceutical and Biomedical Analysis, 2015, 102, 282-289.	1.4	113
111	Monitoring therapeutic monoclonal antibodies in brain tumor. MAbs, 2014, 6, 1385-1393.	2.6	18
112	Antibody-drug conjugates. MAbs, 2014, 6, 15-17.	2.6	131
113	Antibody-drug conjugate model fast characterization by LC-MS following IdeS proteolytic digestion. MAbs, 2014, 6, 173-184.	2.6	104
114	World Antibody-Drug Conjugate Summit, October 15–16, 2013, San Francisco, CA. MAbs, 2014, 6, 18-29.	2.6	15
115	Analysis of monoclonal antibody by a novel CEâ€UV/MALDIâ€MS interface. Electrophoresis, 2014, 35, 2986-2995.	1.3	40
116	Monoclonal antibodies biosimilarity assessment using transient isotachophoresis capillary zone electrophoresis-tandem mass spectrometry. MAbs, 2014, 6, 1464-1473.	2.6	58
117	Theory and practice of size exclusion chromatography for the analysis of protein aggregates. Journal of Pharmaceutical and Biomedical Analysis, 2014, 101, 161-173.	1.4	226
118	Innovative Native MS Methodologies for Antibody Drug Conjugate Characterization: High Resolution Native MS and IM-MS for Average DAR and DAR Distribution Assessment. Analytical Chemistry, 2014, 86, 10674-10683.	3.2	147
119	Full Antibody Primary Structure and Microvariant Characterization in a Single Injection Using Transient Isotachophoresis and Sheathless Capillary Electrophoresis–Tandem Mass Spectrometry. Analytical Chemistry, 2014, 86, 9074-9081.	3.2	80
120	Advantages of Extended Bottom-Up Proteomics Using Sap9 for Analysis of Monoclonal Antibodies. Analytical Chemistry, 2014, 86, 9945-9953.	3.2	50
121	Middle-Down Analysis of Monoclonal Antibodies with Electron Transfer Dissociation Orbitrap Fourier Transform Mass Spectrometry. Analytical Chemistry, 2014, 86, 3005-3012.	3.2	147
122	Characterization of Therapeutic Antibodies and Related Products. Analytical Chemistry, 2013, 85, 715-736.	3.2	509
123	Noncovalent Mass Spectrometry for the Characterization of Antibody/Antigen Complexes. Methods in Molecular Biology, 2013, 988, 243-268.	0.4	8
124	NanoLC Chips MS/MS for the Characterization of N-Glycopeptides Generated from Trypsin Digestion of a Monoclonal Antibody. Methods in Molecular Biology, 2013, 988, 81-91.	0.4	4
125	Cetuximab Fab and Fc N-Glycan Fast Characterization Using IdeS Digestion and Liquid Chromatography Coupled to Electrospray Ionization Mass Spectrometry. Methods in Molecular Biology, 2013, 988, 93-113.	0.4	47
126	Analytical characterization of biosimilar antibodies and Fc-fusion proteins. TrAC - Trends in Analytical Chemistry, 2013, 48, 81-95.	5.8	104

#	Article	IF	CITATIONS
127	Rapid and multi-level characterization of trastuzumab using sheathless capillary electrophoresis-tandem mass spectrometry. MAbs, 2013, 5, 479-490.	2.6	80
128	Time Resolved Native Ion-Mobility Mass Spectrometry to Monitor Dynamics of IgG4 Fab Arm Exchange and "Bispecific―Monoclonal Antibody Formation. Analytical Chemistry, 2013, 85, 9785-9792.	3.2	62
129	Correct primary structure assessment and extensive glyco-profiling of cetuximab by a combination of intact, middle-up, middle-down and bottom-up ESI and MALDI mass spectrometry techniques. MAbs, 2013, 5, 699-710.	2.6	159
130	Approval of the first biosimilar antibodies in Europe. MAbs, 2013, 5, 621-623.	2.6	114
131	Insulin-like growth factor receptor type I as a target for cancer therapy. Frontiers in Bioscience - Scholar, 2013, S5, 439-450.	0.8	9
132	7th Annual European Antibody Congress 2011. MAbs, 2012, 4, 134-152.	2.6	7
133	Marketing approval of mogamulizumab. MAbs, 2012, 4, 419-425.	2.6	193
134	Biosimilar, Biobetter, and Next Generation Antibody Characterization by Mass Spectrometry. Analytical Chemistry, 2012, 84, 4637-4646.	3.2	225
135	Biosimilar, biobetter and next generation therapeutic antibodies. MAbs, 2011, 3, 107-110.	2.6	84
136	Therapeutic Fc-fusion proteins and peptides as successful alternatives to antibodies. MAbs, 2011, 3, 415-416.	2.6	156
137	The amazing, multipurpose antibody. MAbs, 2011, 3, 221-222.	2.6	10
138	UV and Xâ€ray structural studies of a 101â€residue long Tat protein from a HIVâ€1 primary isolate and of its mutated, detoxified, vaccine candidate. Proteins: Structure, Function and Bioinformatics, 2010, 78, 1441-1456.	1.5	30
139	Strategies and challenges for the next generation of therapeutic antibodies. Nature Reviews Immunology, 2010, 10, 345-352.	10.6	742
140	GlycoFi's technology to control the glycosylation of recombinant therapeutic proteins. Expert Opinion on Drug Discovery, 2010, 5, 95-111.	2.5	61
141	Structural Characterization of Antibodies by Mass Spectrometry. , 2010, , 613-634.		4
142	Antibody Glycans Characterization. , 2010, , 635-656.		3
143	The next generation of antibody-drug conjugates comes of age. Discovery Medicine, 2010, 10, 329-39.	0.5	78
144	Le mot des coordinateurs. Medecine/Sciences, 2009, 25, 995-996.	0.0	3

#	Article	IF	CITATIONS
145	Identification and characterization of asparagine deamidation in the light chain CDR1 of a humanized IgC1 antibody. Analytical Biochemistry, 2009, 392, 145-154.	1.1	222
146	Extending Mass Spectrometry Contribution to Therapeutic Monoclonal Antibody Lead Optimization: Characterization of Immune Complexes Using Noncovalent ESI-MS. Analytical Chemistry, 2009, 81, 6364-6373.	3.2	79
147	The way forward, enhanced characterization of therapeutic antibody glycosylation: Comparison of three level mass spectrometry-based strategies. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 872, 23-37.	1.2	81
148	Trends in Glycosylation, Glycoanalysis and Glycoengineering of Therapeutic Antibodies and Fc-Fusion Proteins. Current Pharmaceutical Biotechnology, 2008, 9, 482-501.	0.9	228
149	Peptides as tools and drugs for immunotherapies. Journal of Peptide Science, 2007, 13, 588-602.	0.8	23
150	Characterization by liquid chromatography combined with mass spectrometry of monoclonal anti-IGF-1 receptor antibodies produced in CHO and NS0 cells. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2005, 819, 203-218.	1.2	120
151	A recombinant humanized anti-insulin-like growth factor receptor type I antibody (h7C10) enhances the antitumor activity of vinorelbine and anti-epidermal growth factor receptor therapy against human cancer xenografts. International Journal of Cancer, 2005, 113, 316-328.	2.3	207
152	Proteomics for Development of Immunotherapies. , 2004, , 243-278.		2
153	Expression of recombinant proteins in a lipid A mutant of Escherichia coli BL21 with a strongly reduced capacity to induce dendritic cell activation and maturation. Journal of Immunological Methods, 2003, 272, 199-210.	0.6	37
154	Identification of B- and T-Cell Epitopes of BB, a Carrier Protein Derived from the G Protein of Streptococcus Strain G148. Vaccine Journal, 2003, 10, 125-132.	3.2	13
155	Gamma Interferon-Dependent Protection of the Mouse Upper Respiratory Tract following Parenteral Immunization with a Respiratory Syncytial Virus G Protein Fragment. Journal of Virology, 2002, 76, 10203-10210.	1.5	29
156	Streptococcus pneumoniae polysaccharides conjugated to the outer membrane protein A from Klebsiella pneumoniae elicit protective antibodies. Vaccine, 2002, 20, 2174-2180.	1.7	20
157	DDA adjuvant induces a mixed Th1/Th2 immune response when associated with BBG2Na, a respiratory syncytial virus potential vaccine. Vaccine, 2002, 20, 2743-2751.	1.7	42
158	Passive Transfer of Serum Antibodies Induced by BBG2Na, a Subunit Vaccine, in the Elderly Protects SCID Mouse Lungs Against Respiratory Syncytial Virus Challenge. Virology, 2002, 303, 130-137.	1.1	15
159	Identification and characterisation of multiple linear B cell protectopes in the respiratory syncytial virus G protein. Vaccine, 2001, 19, 2345-2351.	1.7	17
160	A novel bipolar mode of attachment to aluminium-containing adjuvants by BBG2Na, a recombinant subunit hRSV vaccine. Vaccine, 2001, 19, 4143-4152.	1.7	24
161	Residual DNA Quantification in Clinical Batches of BBG2Na, a Recombinant Subunit Vaccine Against Human Respiratory Syncytial Virus. Biologicals, 2001, 29, 123-132.	0.5	15
162	Stability and CTL-activity of P40/ELA Melanoma Vaccine Candidate. Biologicals, 2001, 29, 293-298.	0.5	9

#	Article	IF	CITATIONS
163	Development of a quantitative assay for residual host cell proteins in a recombinant subunit vaccine against human respiratory syncytial virus. Journal of Immunological Methods, 2001, 251, 151-159.	0.6	27
164	Safety and Immunogenicity of a Novel Recombinant Subunit Respiratory Syncytial Virus Vaccine (BBG2Na) in Healthy Young Adults. Journal of Infectious Diseases, 2001, 184, 1456-1460.	1.9	111
165	Targeting of Nasal Mucosa-Associated Antigen-Presenting Cells In Vivo with an Outer Membrane Protein A Derived from Klebsiella pneumoniae. Infection and Immunity, 2001, 69, 6434-6444.	1.0	42
166	Spanning or Looping? The Order and Conformation of Bipolar Phospholipids in Lipid Membranes Using 2Hâ€NMR Spectroscopy. Chemistry - A European Journal, 2000, 6, 4379-4384.	1.7	24
167	CD4+ T-Cell-Mediated Antiviral Protection of the Upper Respiratory Tract in BALB/c Mice following Parenteral Immunization with a Recombinant Respiratory Syncytial Virus G Protein Fragment. Journal of Virology, 2000, 74, 3455-3463.	1.5	38
168	Priming by Microbial Antigens from the Intestinal Flora Determines the Ability of CD4+ T Cells to Rapidly Secrete IL-4 in BALB/c Mice Infected with <i>Leishmania major</i> . Journal of Immunology, 2000, 165, 5637-5645.	0.4	60
169	Influence of administration dose and route on the immunogenicity and protective efficacy of BBG2Na, a recombinant respiratory syncytial virus subunit vaccine candidate. Vaccine, 2000, 18, 2735-2742.	1.7	23
170	Absence of Lung Immunopathology Following Respiratory Syncytial Virus (RSV) Challenge in Mice Immunized with a Recombinant RSV G Protein Fragment. Virology, 1999, 258, 128-140.	1.1	61
171	Identification of Multiple Protective Epitopes (Protectopes) in the Central Conserved Domain of a Prototype Human Respiratory Syncytial Virus G Protein. Journal of Virology, 1999, 73, 5637-5645.	1.5	60
172	The recombinant Klebsiella pneumoniae outer membrane protein OmpA has carrier properties for conjugated antigenic peptides. FEBS Journal, 1998, 255, 446-454.	0.2	41
173	New diphenylhexatriene derivatives as fluorescent membrane probes: Partitioning properties. Journal of Fluorescence, 1993, 3, 145-147.	1.3	2
174	Influence of the length of the spacer on the partitioning properties of amphiphilic fluorescent membrane probes. Chemistry and Physics of Lipids, 1993, 66, 135-142.	1.5	31
175	A new reagent for the removal of the 4-methoxybenzyl ether: application to the synthesis of unusual macrocyclic and bolaform phosphatidylcholines Journal of Organic Chemistry, 1992, 57, 1777-1783.	1.7	97
176	Synthesis of fluorescent probes for localized membrane fluidity measurements. Tetrahedron, 1991, 47, 1459-1472.	1.0	13
177	1-Palmitoyl-2-[3-(diphenylhexatrienyl) propanoyl]-sn-glycero-3-phosphoethanolamine as a fluorescent membrane probe. Synthesis and partitioning properties. Chemistry and Physics of Lipids, 1990, 55, 13-24.	1.5	5
178	1,1′-Thionyldi-imidazole in the synthesis of a long-chain phospholipidc membrane probe. Journal of the Chemical Society Chemical Communications, 1990, .	2.0	5